




OceanofPDF.com

https://oceanofpdf.com/


Practical Machine Learning
The book provides an accessible, comprehensive introduction for beginners
to machine learning, equipping them with the fundamental skills and
techniques essential for this field.

It enables beginners to construct practical, real-world solutions powered
by machine learning across diverse application domains. It demonstrates the
fundamental techniques involved in data collection, integration, cleansing,
transformation, development, and deployment of machine learning models.
This book emphasizes the importance of integrating responsible and
explainable AI into machine learning models, ensuring these principles are
prioritized rather than treated as an afterthought. To support learning, this
book also offers information on accessing additional machine learning
resources such as datasets, libraries, pre-trained models, and tools for
tracking machine learning models.

This is a core resource for students and instructors of machine learning
and data science looking for a beginner-friendly material which offers real-
world applications and takes ethical discussions into account.

OceanofPDF.com

https://oceanofpdf.com/


Practical Machine Learning

A Beginner’s Guide with Ethical Insights

Ally S. Nyamawe, Mohamedi M. Mjahidi, Noe E. Nnko, Salim A.
Diwani, Godbless G. Minja, and Kulwa Malyango

OceanofPDF.com

https://oceanofpdf.com/


Designed cover image: KHAIDARY HADAIKA
First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
CRC Press is an imprint of Taylor & Francis Group, LLC
© 2025 Ally S. Nyamawe, Mohamedi M. Mjahidi, Noe E. Nnko, Salim A. Diwani, Godbless G.
Minja, and Kulwa Malyango
Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.
The Open Access version of this book, available at www.taylorfrancis.com, has been made available
under a Creative Commons [Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND)] 4.0
license.
Any third party material in this book is not included in the OA Creative Commons license, unless
indicated otherwise in a credit line to the material. Please direct any permissions enquiries to the
original rightsholder.
This work was carried out with the aid of a grant from the Artificial Intelligence for Development in
Africa Program, a program funded by Canada’s the International Development Research Centre,
Ottawa, Canada and the Swedish International Development Cooperation Agency.
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.
Library of Congress Cataloging‑in‑Publication Data
Names: Nyamawe, Ally S., author. | Mjahidi, Mohamedi M., author. | Nnko, Noe E. (Noe Elisa),
author. | Diwani, Salim A., author. | Minja, Godbless G., author. | Malyango, Kulwa, author.
Title: Practical machine learning : a beginner’s guide with ethical insights / Ally S. Nyamawe,
Mohamedi M. Mjahidi, Noe E. Nnko, Salim A. Diwani, Godbless G. Minja, Kulwa Malyango.
Description: First edition. | Boca Raton, FL : CRC Press, 2025. | Includes bibliographical references
and index.
Identifiers: LCCN 2024034546 (print) | LCCN 2024034547 (ebook) | ISBN 9781032782164
(hardback) | ISBN 9781032770291 (paperback) | ISBN 9781003486817 (ebook)
Subjects: LCSH: Machine learning. | Artificial intelligence.
Classification: LCC Q325.5 .N93 2025 (print) | LCC Q325.5 (ebook) | DDC 006.3/1--
dc23/eng/20241119

http://www.taylorfrancis.com/


LC record available at https://lccn.loc.gov/2024034546
LC ebook record available at https://lccn.loc.gov/2024034547
ISBN: 978-1-032-78216-4 (hbk)
ISBN: 978-1-032-77029-1 (pbk)
ISBN: 978-1-003-48681-7 (ebk)
DOI: 10.1201/9781003486817
Typeset in Times
by SPi Technologies India Pvt Ltd (Straive)

OceanofPDF.com

https://lccn.loc.gov/2024034546
https://lccn.loc.gov/2024034547
https://dx.doi.org/10.1201/9781003486817
https://oceanofpdf.com/


Contents
About the authors
Preface
Acknowledgments
Glossary
1 Fundamentals of machine learning
2 Mathematics for machine learning
3 Data preparation
4 Machine learning operations
5 Machine learning software and hardware requirements
6 Responsible AI and explainable AI
7 Artificial general intelligence
8 Machine learning step-by-step practical examples
Appendix: Machine learning resources
Index

OceanofPDF.com

https://oceanofpdf.com/


About the authors
Ally S. Nyamawe is a Computer Scientist with over 15 years of experience
in academia. He holds a PhD in Computer Science and Technology from
Beijing Institute of Technology (2020), and his research interest mainly
focuses on AI applications in Software Engineering. Nyamawe is a Senior
Lecturer in Computer Science at the University of Dodoma, Tanzania.
Nyamawe’s recent work focused on contributing to developing AI-driven
innovations that address social challenges and AI uptake for sustainable
development in Africa. Nyamawe has been working on different research
projects committed to fostering the application of AI for social good and
leveraging coding and algorithmic skills in addressing real-world problems.
Nyamawe has extensive experience in leading projects with support from
the World’s renowned funders, including IDRC, Sida, UNESCO-TWAS,
and the EU Erasmus+ Program. Nyamawe actively contributes to the
academic community through publications and participation in renowned
conferences and international forums. He has served on the program
committees for prestigious conferences, including the 37th IEEE/ACM
International Conference on Automated Software Engineering, the 11th
International Workshop on Software and Systems Traceability, and the 1st
International Conference on the Advancements of Artificial Intelligence in
African Context (AAIAC 2023). His recent recognition includes a 2022
recipient of the Seed Grant for New African Principal Investigators awarded
by The World Academy of Sciences under UNESCO funding.



Mohamedi M. Mjahidi (PhD) is a Lecturer at the Department of
Computer Science and Engineering (DoCSE), College of Informatics and
Virtual Education (CIVE), the University of Dodoma (UDOM), Dodoma,
Tanzania. He graduated from the University of Dar es Salaam (UDSM) in
2006 with a BSc in Computer Science and completed his MSc in
Telecommunication Engineering at UDOM in 2011. He then completed his
PhD in Computer Engineering at the Gazi University, Ankara, Turkey, in
2020. His research interests include Artificial Intelligence, Machine
Learning, and Computer and Mobile Networks. At the time of writing this



book, Mjahidi is serving as the Lab and Training Coordinator for AI4D
Research Lab.

Noe E. Nnko currently serves as the Acting Director of ICT at the
University of Dodoma. He is an experienced Cybersecurity, Artificial
Intelligence (AI), and Data Science Researcher/Engineer, boasting over 11
years of experience in telecommunication, networking, software, and web
application security. He specializes in the design and implementation of AI
models, particularly for detecting anomalies in computer networks.
Additionally, he has expertise in using blockchain technology to develop
secure and privacy-preserving decentralized systems. His PhD research at



Northumbria University, UK, focused on exploiting blockchain technology
and Artificial Immune Systems (AIS) to create a decentralized, secure, and
privacy-preserving e-Government system for enforcing data protection and
trust. During his master’s degree studies in India in 2014, he received
professional training in ethical hacking, Linux server administration,
Android mobile application development, CCNA, and web application
programming in JAVA. One of his notable contributions to AI and academic
research is the development of a new general-purpose multiclass classifier
based on the Dendritic Cell Algorithm (McDCA), which is currently under
review by the IEEE Transactions on Neural Networks and Learning
Systems journal. His current research and practical endeavors focus on
leveraging African-origin datasets to develop AI-powered solutions that
address privacy concerns related to data breaches and unlawful access to
personal information.



Salim A. Diwani is a highly skilled and experienced Lecturer at the
University of Dodoma, specializing in Machine Learning and Artificial
Intelligence for more than 12 years. Diwani, acknowledged as a senior
expert in various fields, has made noteworthy contributions to both
academia and practical applications. At the University of Dodoma, he has
fostered a vibrant atmosphere in which students have developed and put
into practice cutting-edge artificial intelligence solutions across various
industries, including agriculture and healthcare. Diwani not only holds a
position at the institution but also acts as the coordinator for the Healthcare
Coordination Unit at AI4D Research Lab. He is responsible for supervising
a group of committed professionals who are dedicated to utilizing AI
technologies to tackle urgent healthcare issues. Diwani’s leadership
includes the responsibility of hosting graduate students supported by AI4D
Research Lab. Diwani is leading the Healthcare Coordination Unit in
developing AI solutions specifically designed for the local requirements of
the Anglophone region in Africa. Diwani and his colleagues are closely
collaborating with the Ministry of Health in the Government of Tanzania to
build an AI policy in the health sector. This effort aims to establish a
favorable setting for the acceptance and assimilation of AI technologies in
healthcare. Diwani and his colleagues are leading the way in utilizing AI to
transform healthcare delivery and address intricate healthcare issues in
Africa and beyond.



Godbless G. Minja is an Assistant Lecturer in the Department of Computer
Science and Engineering (DoCSE) at the University of Dodoma (UDOM)
in Tanzania. He completed his BSc in Computer Science at the University
of Dar es Salaam (UDSM) in Tanzania and MSc in Cyber Security at the
University of Birmingham in the United Kingdom (UK). He is currently
pursuing a PhD in Information and Communication Science and
Engineering (ICSE) at the Nelson Mandela African Institution of Science
and Technology (NM-AIST) in Tanzania.



Kulwa Malyango is a Research Assistant and Software Developer at the
AI4D Research Lab. He has a degree in Computer Science from the
University of Dodoma in Tanzania. His research interests are in the
application of artificial intelligence in the digital economy. Currently
pursuing a master’s degree in Computer Science, Kulwa is expanding his
expertise in software development and artificial intelligence by working
with esteemed researchers at the AI4D Research Lab. His main goal is to
contribute meaningful research and practical solutions that can positively
impact the digital economy, both locally and globally. He envisions a future



where AI technologies are responsibly integrated into various sectors to
improve people’s lives.

OceanofPDF.com

https://oceanofpdf.com/


Preface
Education is the most powerful weapon that you can use to change the
world.

—Nelson Mandela

Machine learning is evolving rapidly, and its impact on our lives is
profound. Machine learning applications have seamlessly expanded beyond
their initial domains, integrating into our daily lives in ways we might not
consciously recognize. It is not always apparent that machine learning
algorithms drive commonplace activities such as using virtual assistants for
voice commands, relying on self-driving features in modern vehicles,
benefiting from smart home devices like intelligent kitchen appliances, or
even experiencing personalized recommendations during online
transactions. Machine learning is not just a tool, it is a force that shapes our
future.

Acquiring machine learning knowledge and skills is crucial for staying
relevant and unlocking diverse career opportunities in, for example,
agriculture, healthcare, engineering, and finance industries. The acquired
skills are in high demand, offering a lucrative career path with personal
growth. Furthermore, machine learning contributes to efficiency, creativity,
and competitive advantages in business creation and optimization.

This book is a humble attempt to demystify the complexities of machine
learning while emphasizing the crucial role of ethics in this transformative
field. Embarking on a journey into machine learning can be both thrilling
and daunting. This book serves as a guide, simplifying concepts and
providing practical examples to make the learning process engaging and



accessible. This book is tailored to varied readers, including students,
professionals exploring a new domain, or simply curious about the
intersection of machine learning and ethics.

In the following chapters, this book will delve into the fundamentals of
machine learning, explain the underlying algorithms, and explore real-
world use cases of machine learning. The ethical implications of AI are
central to the discussions in this book. As we unlock the potential of
machine learning, we must also grapple with the responsibility it places on
our shoulders. Notably, the ethical dimension of machine learning cannot be
overstated. This book navigates the ethical considerations inherent in
designing, deploying, and using machine learning models. From bias in
algorithms to the societal impact of automation, urging the readers to think
critically and responsibly about the power they wield as practitioners in this
field. We encourage the reader to read the book with curiosity, an open
mind, and a keen interest in the ethical dimensions of artificial intelligence.
May this book empower the reader to delve into this transformative field
responsibly and ethically.

OceanofPDF.com

https://oceanofpdf.com/


Acknowledgments
This book was prepared by the AfriAI Research Lab with the aid of a grant
from the AI for Development in Africa Program, a program funded by
Canada’s International Development Research Centre (IDRC), Ottawa,
Canada and the Swedish International Development Cooperation Agency
(Sida).

The authors wish to extend their heartfelt appreciation to the University
of Dodoma (UDOM) and the Nelson Mandela African Institution of
Science and Technology (NM-AIST) for the support they extended to the
authors during the preparation of this book. Moreover, the authors
acknowledge the support from other colleagues in the lab, as well as all
individuals and institutions not explicitly mentioned here, who have
contributed to the accomplishment of this book. Your invaluable
contributions and efforts have been highly beneficial and are greatly
appreciated.

The authors would also like to express their sincere gratitude to Dr.
Tegawende Bissyande, Prof. Solomon Sunday Oyelere, and Dr. Ismaila
Sanusi, who carefully reviewed the early drafts of this book and suggested
various improvements.

Finally, the authors thank their families for the wholehearted support they
devoted throughout the preparation of this book.

OceanofPDF.com

https://oceanofpdf.com/


Glossary
Algorithm

A set of instructions that a computer follows to solve a problem.

Artificial Intelligence
Mimicking human intelligence in machines designed to perform tasks
that usually require human intelligence.

Bias
A systematic error in a machine learning model that causes it to make
incorrect predictions.

Data Preprocessing
Preparing and cleaning raw data before feeding it into a machine
learning algorithm.

Feature Extraction
The process of selecting the most relevant features from the input data
to enable efficient and accurate learning.

Hyperparameters
Parameters that are not learned from the data but are set manually
before training a machine learning model.

Machine Learning
A branch of artificial intelligence that focuses on developing
algorithms and models that enable computers to learn from data and
make predictions without being explicitly programmed.

Metadata
A set of details that provides information about the data, such as data
generation date, data source, data size, owner, and license agreement.

Model Development
Designing, building, and refining a machine learning model to solve a
specific problem or make predictions.

Model Deployment



Deploying a trained machine learning model into a production
environment.

Model Evaluation
The process of assessing the performance of a machine learning model
using various metrics to determine its effectiveness.

Neural Network
A network of artificial neurons or nodes that draws inspiration from
the structure and function of the human brain.

Noise
The presence of inaccurate or irrelevant variations in a dataset.

Overfitting
A phenomenon in machine learning where a model learns excessively
well from the training data and fails to generalize to new, unseen data.

Outlier
A single data point in a dataset that deviates noticeably from the rest of
the dataset.

Supervised Learning
A type of machine learning where a model is trained using labeled
data, meaning each data point has a corresponding target value. The
model learns to predict these target values for new, unseen data.

Testing Data
A set of data (different from the training data) used to evaluate the
performance and generalization of a trained machine learning model.

Training Data
The labeled or unlabeled data used to train a machine learning model.

Underfitting
A phenomenon that occurs when a machine learning model fails to
capture the underlying patterns in the training data, resulting in poor
performance on both the training and testing data.

Unsupervised Learning
A type of machine learning where the model learns from unlabeled
data, discovering hidden patterns and structures within the data
without predefined target values.



Validation Set
A set of data (different from the training and testing datasets) that is
used to fine-tune the performance of a machine learning model.

OceanofPDF.com

https://oceanofpdf.com/


1
Fundamentals of machine learning
DOI: 10.1201/9781003486817-1
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Define machine learning with a foundational understanding of its principles,
terminologies, and processes.

2. Articulate the importance of machine learning, its practical applications, and growing
relevance.

3. Differentiate between various types of machine learning algorithms, their characteristics,
and use cases.

4. Examine real-world applications of machine learning across diverse industries and their
practical impact.

5. Understand the interdisciplinary connections of machine learning with other computer
science disciplines.

1.1 What is machine learning?
Machine learning is a field of science that utilizes data and algorithms to
train computers to mimic human learning processes, as illustrated in Figure
1.1. It involves learning from data to acquire knowledge (i.e., what is
learnt), understand the process (i.e., how it learnt), and apply this
knowledge to solve problems (i.e., reasoning and decision-making) reliably.

https://dx.doi.org/10.1201/9781003486817-1


Figure 1.1 Machine learning overview.

Additionally, as summarized in Figure 1.2, machine learning can also be
defined as the science of creating autonomous software or models that learn
from data to solve problems and make predictions. Simply put, machine
learning focuses on building models that improve automatically with
experience. This approach offers greater flexibility and efficiency,
significantly reducing software developers’ need to manually program
machine instructions.

Figure 1.2 The meaning of machine learning.

1.2 A brief history of machine learning
Machine learning has been evolving since its inception in the 1950s. In the
1970s and 1980s, the field of machine learning primarily revolved around
the goal of decision-making based on predetermined rules. However, in the
1990s, a notable shift occurred, redirecting machine learning toward a more



data-centric approach. During the 2000s, there was a significant
advancement in computer learning capabilities, particularly complex and
data-rich applications, for example, processing visual information. This
progress greatly contributed to the machines’ ability to learn and
comprehend, mirroring the way human brains work. In the 2010s, machine
learning experienced remarkable progress, marked by significant
developments in voice assistants, self-driving technologies,
recommendation systems, and the widespread adoption of spam filters and
chatbots. In the early 2020s, ongoing trends include the exploration of
federated learning, allowing model training across decentralized machines
and an increased focus on ethical considerations. Additionally, machines
can learn and generate content in human-like language and create original
and creative outputs on their own, such as images, text, music, or even
entire realistic scenarios. Furthermore, the field continues to evolve,
emphasizing responsible AI practices, bias mitigation, and the development
of models that align with ethical principles.

1.3 Types of machine learning algorithms
An algorithm is a set of mathematical instructions or rules that directs a
computer program to solve a specific problem or perform a task. In machine
learning, an algorithm enables a model to process data, identify patterns,
and make predictions. It is the fundamental building block that drives the
learning process and allows the model to generalize its knowledge to new,
unseen data. There are four main types of machine learning algorithms:
Supervised Learning, Unsupervised Learning, Semi-supervised Learning,
and Reinforcement Learning, which are discussed in the following
subsections.



1.3.1 Supervised learning
Supervised learning is a branch of machine learning wherein the algorithm
learns from input features associated with known output labels or target
values, enabling it to predict or classify new, unseen data. Supervised
learning relies on a dataset containing input-output pairs to train the
algorithm. This concept can be likened to learning under the guidance of a
supervisor. Generally, supervised learning proves more effective when
labeled datasets are available than other learning methods. Its applications
span various real-life scenarios, including fraud detection (e.g.,
distinguishing between fraudulent and legitimate transactions), sales
forecasting (e.g., predicting high, medium, or low sales), and email
categorization (e.g., identifying spam emails). Table 1.1 depicts an example
of a labeled dataset containing the diabetes diagnostic measurements, where
the last feature (label) contains the values of 1 or 0, indicating that a patient
is diabetic or not, respectively.

Table 1.1 An example of a labeled dataset

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

1.3.1.1 Types of supervised learning
Supervised learning encompasses two primary types of problems:
classification and regression.

Classification entails assigning input data samples into predefined
categories or classes. Drawing from previous learning experiences, a

Index Pregnant Glucose BP Skin Insulin BMI Pedigree Age Lab



classification algorithm typically identifies data samples within the
input dataset and assigns them to specific classes. Common
classification types include binary and multiclass classification.

In binary classification, an algorithm trains to classify data
samples into one of two potential classes, aiming to construct a
model capable of accurately assigning new samples to their
respective classes. Examples of binary classification applications
include discerning whether an email is spam or not and
diagnosing whether an individual is diabetic or not. Algorithms
proficient in binary classification include Logistic Regression,
Support Vector Machine, k-Nearest Neighbors, Decision Trees,
Naive Bayes, and Random Forest.
In multiclass classification, an algorithm trains to classify data
samples into three or more classes, aiming to construct a model
capable of accurately categorizing new data samples into their
respective classes. Examples of multiclass classification
applications include determining the genre of a movie into
categories such as action, drama, comedy, or fiction and
classifying animals into categories like dog, cat, or tiger.
Algorithms proficient in multiclass classification include
Decision Tree and Artificial Neural Networks.

Regression involves predicting a continuous output or numerical value
based on input features. To develop a model, regression algorithms are
trained to understand the relationship between independent variables
and a continuous dependent variable. This model can then predict the
outcome of new, unseen input data. An example of a regression
algorithm is Linear Regression.



In linear regression, an algorithm captures the relationship
between a dependent variable (the feature to be predicted) and
one or more independent variables (the predictor features) to
develop a model capable of accurately predicting the dependent
variable based on at least one independent variable. Linear
regression algorithms are categorized into two main types: simple
and multivariate (multiple) regression. Simple linear regression
involves a dependent variable relying on a single independent
variable, while multivariate linear regression involves a
dependent variable relying on multiple independent variables.
Linear regression is extensively used for tasks such as estimating
housing prices based on factors like area, room count, and
location.

1.3.2 Unsupervised learning
Unsupervised learning is a type of machine learning that does not require
labeled datasets. Instead of being guided by predefined labels, the algorithm
independently discovers hidden patterns and insights within the data.
Unsupervised learning is crucial because obtaining unlabeled data is often
easier than acquiring labeled data, which typically requires human
annotators. Additionally, unsupervised learning can help identify features
useful for categorization. Table 1.2 illustrates an unlabeled dataset
containing diabetes diagnostic measurements without a label feature.



Table 1.2 An example of an unlabeled dataset

0 6 148 72 35 0 33.6 0.627 50

1 1 85 66 29 0 26.6 0.351 31

2 8 183 64 0 0 23.3 0.672 32

1.3.2.1 Types of unsupervised learning
Unsupervised learning techniques are categorized into clustering and
association rules as described in the following:
1.3.2.1.1 Clustering
This machine learning technique finds patterns or structures in a collection
of unclassified data and uses them to group similar data into clusters or
segments. Common categories of clustering algorithms include hierarchical,
partitioning, and density-based clustering.

Hierarchical clustering involves creating a hierarchical structure of
clusters by merging or splitting clusters based on the similarity of data
points. The application of hierarchical clustering spans various
domains, including document clustering and social network analysis.
Notable examples of hierarchical clustering algorithms include
agglomerative hierarchical clustering, divisive hierarchical clustering,
and Ward’s method.
Partitioning clustering algorithms organize a dataset into distinct, non-
overlapping groups or clusters, where each data point belongs to only
one cluster. Partitioning clustering is used in applications such as
customer segmentation based on online purchasing behavior.
Examples of partitioning clustering algorithms include K-means, fuzzy
C-means (FCM), X-means, and G-means.

Index Pregnant Glucose BP Skin Insulin BMI Pedigree Age



Density-based clustering algorithms cluster data points according to
their density in the feature space. The algorithm identifies clusters as
regions with a higher density of data points, separated by areas of
lower density. This enables it to uncover clusters of diverse shapes and
effectively handle noise or outliers. In density-based clustering,
clusters emerge around dense regions, while data points in sparser
regions may be classified as outliers. Density-based clustering
algorithms find applications in traffic analysis and anomaly detection
in network security. Examples of such algorithms include Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) and
mean shift.

1.3.2.1.2 Association Rules
This technique is used to identify relationships or associations between
variables in a dataset based on predefined rules. The rules highlight patterns
in the form of “if-then” statements, indicating that the occurrence of one set
of items is associated with the occurrence of another set of items.
Applications of association rules are market basket analysis, online
shopping customer behavior analysis, and inventory management. In
essence, association rules provide valuable insights into the relationships
between seemingly unrelated data points, facilitating data-driven decision-
making in diverse fields. For instance, businesses utilize association rules to
understand patterns of co-occurrence among products frequently purchased
together (e.g., bread and jam, book and pencil), informing decisions on
product placement, targeted marketing, and personalized recommendations.
Examples of association rules algorithms are Apriori, Eclat, and FP-
Growth.



1.3.3 Semi-supervised learning
Semi-supervised learning provides the capability to train an algorithm using
a combination of labeled data, consisting of a small number of examples
with known labels, and unlabeled data, which comprises a large number of
examples without labels. In situations where acquiring fully labeled data is
challenging, unsupervised and semi-supervised learning offers viable
alternatives to supervised learning. The process of creating labeled datasets
can be time-consuming, labor-intensive, and costly, as it often requires the
involvement of domain experts for manual annotation. Various algorithms
can be employed in semi-supervised learning, including self-training, co-
training, generative models, entropy regularization, graph-based methods,
semi-supervised support vector machines (S3VM), and transductive support
vector machines (SVM).

1.3.4 Reinforcement learning
Reinforcement learning involves training a machine learning model to make
a series of decisions within a complex environment. The model perceives
and interprets its surroundings, employing a trial-and-error approach to
discover the optimal solution to a given problem. In reinforcement learning,
the model receives rewards for desirable behaviors and may face penalties
for undesired ones. Several common reinforcement learning algorithms
exist, including Q-learning, deep Q-networks (DQN), policy gradient
methods, actor-centric methods, Monte Carlo methods, and deep
deterministic policy gradient (DDPG).

1.4 Relationship between machine learning



and other computer science disciplines
This section describes the relationship between machine learning and
artificial intelligence, data science, traditional programming, deep learning,
natural language processing, computer vision, and generative AI.

1.4.1 Machine learning and artificial intelligence
In brief, AI is a field within computer science, with machine learning under
its umbrella. While machine learning and AI are often used interchangeably,
machine learning is a subset of AI that enables systems to learn and refine
processes without explicit programming for each task. These systems ingest
data, process it through algorithms, and learn from it, discerning patterns or
anomalies. In contrast, AI involves crafting systems to think and behave in
ways akin to humans, empowering them to undertake tasks typically
requiring human intellect. AI is characterized in two key ways: as the
scientific endeavor to design machines capable of decision-making like
humans and as the manifestation of intelligence in machines, distinct from
natural human and animal intelligence. In essence, machine learning
outputs contribute to AI solutions. While both share similar goals and
functions, AI covers various techniques such as computer vision, natural
language processing, and robotics.

1.4.2 Machine learning and data science
Data science is a discipline that revolves around studying data and
extracting valuable insights from it. On the other hand, machine learning is
a specialized field within data science that focuses on comprehending and
constructing models that leverage data to enhance performance or make
predictions. In simpler terms, data science aims to extract actionable
insights from data, while machine learning is concerned with developing



models that can automate predictive behavior by utilizing the available data.
The relationship between machine learning, AI, and data science is
illustrated in Figure 1.3.

Figure 1.3 The relationship between AI, machine learning, and
data science.

1.4.3 Machine learning and traditional
programming
Both machine learning and traditional programming serve as problem-
solving tools, each suitable for different types of challenges. Traditional
programming excels in scenarios with well-defined rules and structures,
where solutions can be articulated through logical statements and
algorithms. Conversely, machine learning shines in addressing problems
characterized by complex and elusive patterns or relationships. Inspired by
human learning, machine learning empowers computers to glean insights
from examples and autonomously devise solutions. As depicted in Figure
1.4, traditional programming involves the computer processing data and



programs to generate an output. In contrast, machine learning entails the
computer utilizing data and expected output to generate the program.

Figure 1.4 The relationship between machine learning and
traditional programming.

1.4.4 Machine learning and deep learning
Both machine learning and deep learning reside under the umbrella of
artificial intelligence, yet they diverge in their learning methods and
problem-solving approaches. Deep learning, a subset of machine learning,
is distinguished by its utilization of neural networks, inspired by the human
brain, to learn and solve problems. In contrast, machine learning trains
computer programs or systems to execute tasks without explicit
instructions. Machine learning excels in well-defined tasks with structured
and labeled data, typically involving lower data volumes. Conversely, deep
learning thrives in tackling complex tasks with unstructured and extensive
data. Examples of machine learning applications encompass spam filtering,
image recognition, and product recommendation systems. In contrast, deep
learning finds applications in self-driving cars, speech recognition, medical
image analysis, and generative AI applications like chatbots (such as
ChatGPT) and Google’s Gemini. Figure 1.5 delineates the relationship
between artificial intelligence, machine learning, and deep learning.



Figure 1.5 The relationship between artificial intelligence,
machine learning, and deep learning.

1.4.5 Machine learning and natural language
processing
Natural language processing (NLP) is a specialized field within machine
learning that focuses on the interaction between human language and
computers. It recognizes the abundance of valuable information in text and
speech data, such as news articles, customer reviews, and research papers.
NLP provides computational tools to extract insights and derive meaning
from this unstructured data, making it a crucial component of the machine



learning toolbox for understanding and processing human language. The
applications of NLP are diverse and span across various industries. In
healthcare, NLP can be used for tasks like clinical text analysis and medical
record extraction. In education, it can aid in automated grading and
intelligent tutoring systems. Communication platforms like Google
Translate and text auto-completion rely on NLP algorithms. In business and
marketing, sentiment analysis and chatbots employ NLP techniques. Also,
NLP contributes to entertainment applications such as social media feed
recommendations and voice assistants. Figure 1.6 illustrates the relationship
between machine learning and natural language processing, highlighting
how NLP plays a vital role in leveraging machine learning techniques to
process and understand human language.



Figure 1.6 The relationship between machine learning and natural
language processing.

1.4.6 Machine learning and computer vision
Computer vision (CV) constitutes a subset of AI that empowers computers
to comprehend visual information such as images and videos. Given the
complex and variable nature of visual data, traditional programming
techniques often fall short in resolving many computer vision tasks. Instead,
machine learning methods, particularly deep learning, are leveraged to
discern visual patterns from images autonomously. This progression
underlies the creation of applications like image classification (categorizing



images), object detection (locating specific objects within images), and
facial recognition (matching and identifying human faces). The relationship
among artificial intelligence, machine learning, and computer vision is
succinctly depicted in Figure 1.7.

Figure 1.7 The relationship between artificial intelligence,
machine learning, and computer vision.

1.4.7 Machine learning and generative AI
AI has made significant strides in recent years, showcasing mastery in
various domains, from complex games to language translation and disease



diagnosis. However, what if AI could transcend its current capabilities and
become a creator? You may have encountered ChatGPT, a chatbot with
human-like conversational abilities, or Midjourney, a model capable of
generating realistic images from textual prompts. These breakthroughs are
powered by Generative AI, a subset of machine learning, particularly deep
learning, which focuses on generating novel content rather than just
analyzing or acting upon existing data. The following key advancements
have propelled the evolution of Generative AI:

i. Transformers: These architectures revolutionized NLP, enabling AI
systems to understand the relationships between words and the
language context more sophisticatedly. This paved the way for
advanced conversational AI applications.

ii. GANs (Generative Adversarial Networks): These systems operate
within a framework where two deep neural networks engage in a
competitive process: a generator network strives to produce realistic
data, while a discriminator network differentiates between real and
generated examples. This dynamic competition fosters a cycle of
continuous enhancement, driving improvements in the quality and
realism of the generated content.

iii. Diffusion Models: These learn to create new data by gradually
reversing a process of adding noise to existing data. They have proven
exceptionally powerful in generating high-resolution images and other
complex media.

1.5 The importance of machine learning
Machine learning models streamline tasks that would typically demand
manual effort from humans. By harnessing machine learning, organizations



can uncover valuable insights from data, facilitating informed decision-
making processes. Implementing data-driven strategies enhances business
efficiency, performance, and productivity and mitigates risks. The
significance of machine learning extends across various sectors and
industries, enabling the anticipation of future risks and opportunities. In
healthcare, for instance, machine learning can scrutinize medical images,
genomic data, and electronic health records to aid physicians in making
precise diagnoses and recommending suitable treatments. Similarly,
machine learning finds utility in crop monitoring, yield prediction, pest
detection, and soil analysis in agriculture. Machine learning optimizes crop
production and resource allocation by enabling farmers to make data-driven
decisions.

1.6 When do we need machine learning?
Machine learning is indispensable across various contexts and problem
domains, especially where conventional rule-based programming or manual
analysis falls short. The following are several typical scenarios where
machine learning proves exceptionally beneficial:

a. Handling of large and complex data: Machine learning algorithms
excel at revealing patterns, correlations, and insights that are
challenging to discern manually, especially when confronted with
extensive datasets. With its capacity to navigate complex data
structures and high-dimensional data, machine learning is well-suited
for data mining, pattern recognition, and predictive modeling tasks.

b. Need for automation and efficiency: Machine learning can automate
repetitive tasks and boost efficiency across various domains. In
customer service, for instance, integrating chatbots driven by machine



learning can efficiently handle basic inquiries, allowing human agents
to focus on more complex issues.

c. Prediction and forecasting: Machine learning algorithms can analyze
historical data patterns to forecast outcomes across various sectors,
including stock price movements, weather patterns, and disease
outbreaks. By harnessing this capability, machine learning provides
invaluable insights, enabling informed decision-making grounded in
past trends.

d. Anomaly detection: Machine learning algorithms can detect
anomalies and recognize unusual patterns within data. This capability
holds significant value across various domains, including fraud
detection, cybersecurity, and network monitoring. By acquiring
knowledge of normal behavior through training, machine learning
models can effectively identify deviations and anomalies that may
indicate fraudulent activities or security breaches. This enables prompt
intervention and implementation of mitigation measures to address
potential risks and safeguard the system or network.

e. Personalization and recommendation systems: Machine learning
empowers personalized experiences and tailored recommendations by
scrutinizing user preferences and behavior. This technology drives
recommendation engines across diverse domains like hospitality,
content streaming, and social media. By analyzing user data, machine
learning models deliver personalized suggestions for products,
services, movies, or connections that resonate with individual
preferences.

f. Computational linguistics: Machine learning is pivotal in
computational linguistic tasks, empowering machines to process,
comprehend, and interpret human languages effectively; this involves



language translation, sentiment analysis, speech recognition, and
chatbots. Through extensive training on vast amounts of text data,
machine learning models can grasp and generate human language,
facilitating seamless communication and language-based interactions.

1.7 Machine learning skills
Given the interdisciplinary nature of machine learning, the requisite skills
lie at the intersection of various domains, including software engineering,
data science, and communication. These skills can be broadly categorized
into technical and soft skills, as elaborated in the following subsections.

1.7.1 Essential technical skills for machine
learning professionals
This refers to the technical skills spanning data science and software
engineering, as summarized in Table 1.3.

Table 1.3 Essential technical skills for machine learning
professionals

Software
Engineering

Includes the ability to write computer programs,
understanding of algorithms and data structures, and
knowledge of computer architecture and
organization.

Statistics and
Mathematics

This entails having proficiency in hypothesis testing,
data modeling, and a strong grasp of mathematical
concepts such as probability, statistics, and linear
algebra. It also involves the ability to devise an
evaluation strategy for predictive models and
algorithms.

Skill Description



1.7.2 Essential soft skills for machine learning
professionals
Soft skills are what set apart effective machine learning professionals from
those who are ineffective. These skills are needed for the project’s
successful completion and delivery. Such skills include communication,
problem-solving, time management, teamwork, and a thirst for learning.

1.8 What do machine learning
professionals do?
Machine learning professionals are responsible for designing, building,
testing, deploying, and updating machine learning models. In particular, this
involves:

Performing data analysis.
Running machine learning experiments.
Implementing machine learning models.
Optimizing the machine learning models.
Deploying machine learning models into production.

Additionally, a significant aspect of the role involves collaborating with
various stakeholders, including domain experts, data scientists, researchers,
software engineers, and product managers, to establish project objectives
and roadmaps.



1.9 Real-world applications of machine
learning
Machine learning finds applications across numerous domains:
manufacturing, retail, healthcare and life sciences, transportation, digital
economy, agriculture, environmental conservation, and education. Table 1.4
provides real-world examples of machine-learning applications in various
fields.



Table 1.4 A summary of some real-world applications of
machine learning

Image
recognition

Identification and classification of objects or
patterns within digital images. Application examples
include labeling an X-ray image as cancerous or not
and assigning a name to a photographed face (this is
known as “tagging” on Facebook).

Speech
recognition

Translating speech into a readable text that the
machine can understand and work on. This results in
applications capable of responding to speech.
Speech recognition is used for voice search and
dialing, and application control. Real-world speech
recognition applications include Google Home,
Google Assistant, Alexa, Siri, and Cortana.

Medical
diagnosis

Studying physiological data, environmental
influences, and genetic factors complements the
decision-making by medical doctors to diagnose
diseases early and effectively. Examples of real-life
applications include Dr. Elsaa, CareAi, and Ada
Healthb.

Agriculture Enabling accurate and efficient farming with less
manpower for high and quality yields. It can be used
to predict crop yield as well as detect and assess the
impact of crop diseases. Application examples
include Plantixc, Trace Genomics, and Agriod.

Automotive
industry

Building self-driving cars integrated with various
models and algorithms that analyze data collected
from cameras and sensors, interpreting them, and
making decisions accordingly. Common examples
include Google’s and Tesla’s self-driving cars.

Travel
assistance

Virtual travel agents that enhance the overall travel
experience for users. Examples of real-life

Application Description



applications include Google Maps, commercial
flights, and riding apps like Uber and Bolt.

Entertainment Recommending personalized entertainment content
based on the user's history. For example, Netflix
recommends movies based on users’ past behaviors.
Facebook gathers behavioral information for every
user on social media platforms and uses it to predict
interests and recommends articles and notifications
on news feed.

Email
Intelligence

Enhancing intelligence capabilities of email
applications. Examples include email classification
(e.g., spam filtering) and smart replies.

Cyber security Detecting and preventing security threats. Machine
learning applications in cybersecurity include
intrusion detection, malware detection, anomaly
detection, vulnerability detection, and fraud
detection.

Surveillance Analyzing video or image data for object detection,
tracking, and behavior recognition. Examples of
applications are video surveillance, crowd
monitoring, and real-time alert and response.

Notes:
a https://www.elsa.health/
b https://ada.com/
c https://plantix.net/en/
d https://agrio.app/

Application Description

https://www.elsa.health/
https://ada.com/
https://plantix.net/en/
https://agrio.app/


1.10 Machine learning and ethical
concerns
The ethical considerations surrounding machine learning are increasingly
paramount as the technology progresses. Issues such as bias, explainability,
privacy, transparency, algorithmic fairness, safety, job displacement, and
weaponization necessitate a comprehensive approach. Prioritizing fairness,
accountability, and transparency entails investing in pertinent research,
crafting supportive ethical frameworks, and implementing requisite policies
and regulations. These endeavors are vital to ensure that the potential
benefits of machine learning outweigh its potential harms. Moreover,
raising public awareness regarding the ethical implications of machine
learning is pivotal in fostering conscientious and informed utilization of this
technology. Addressing these concerns collectively will guarantee that
machine learning evolves and is deployed to align with societal values and
ethical standards, ultimately serving the greater good.

1.11 Summary
This chapter introduces the fundamental concepts of machine learning, its
relationship with other related concepts, and its overall significance.
Furthermore, the chapter explores various scenarios in which machine
learning is essential. It also presents the crucial skills required for
professionals in machine learning. Real-world examples are offered,
showcasing the practical applications of machine learning and highlighting
its relevance and impact. Different types of machine learning problems are
discussed, and lastly, the chapter concludes by briefly highlighting the
ethical concerns of machine learning.



Exercises
1. With examples of any three industries in which machine learning is used, give thorough

descriptions of how it is used.
2. Give descriptions of what machine learning models promise in software development.
3. With at least three algorithm examples for each, provide thorough descriptions of the four

main types of machine learning algorithms (and their respective sub-types where
applicable).

4. Provide descriptions of the relationship between machine learning and the following
disciplines:

a. Artificial Intelligence
b. Data Science
c. Traditional Programming
d. Deep Learning

5. In detail, describe the following terminologies:
a. Generative AI
b. NLP

6. Explain the importance of machine learning.
7. With examples, outline the scenarios in which machine learning is needed.
8. Provide descriptions of the essential skills for machine learning professionals.
9. Explain any five real-world machine learning applications with at least two examples for

each.
10. Briefly explain the ethical concerns of machine learning.

Further Reading
Dönmez, P. (2013). Introduction to machine learning, by Ethem Alpaydın.

Cambridge, MA: The MIT Press2010. ISBN: 978-0-262-01243-0.
Natural Language Engineering, 19(2), 285–288.

Firican, G. (2023). The history of machine learning. Retrieved December
12, 2023, from https://www.lightsondata.com/the-history-of-machine-
learning/

https://www.lightsondata.com/the-history-of-machine-learning/


Gonsalves, T. and Upadhyay, J. (2021). Integrated deep learning for self-
driving robotic cars. AI for Future Generation Robotics, Elsevier, pp. 93–
118.

Gupta, S. (2021, June 14). What skills do you need to become a Machine
Learning engineer? Springboard.
https://www.springboard.com/blog/data-science/machine-learning-skills/

Lateef, Z. (2021, December 19). Introduction to machine learning: All you
need to know about machine learning. Edureka.
https://www.edureka.co/blog/introduction-to-machine-learning/

Li, Y. F., & Liang, D. M. (2019). Safe semi-supervised learning: A brief
introduction. Frontiers of Computer Science, 13(4), 669–676.

Oracle. (2022). What is big data? Retrieved July 7, 2022, from
https://www.oracle.com/in/big-data/what-is-big-data/

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

Rice University. (2022). Computer science Vs. Artificial
intelligence/machine learning: What’s the difference? Retrieved July 7,
2022, from https://csweb.rice.edu/academics/graduate-programs/online-
mcs/blog/computer-science-vs-artificial-intelligence-and-machine-
learning

Salesforce Blog. (2022). Machine learning: 6 real-world examples.
Retrieved July 8, 2022, from
https://www.salesforce.com/eu/blog/2020/06/real-world-examples-of-
machine-learning.html

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 4(1), 1–103.

Yale University. (2022). Machine learning. Retrieved July 7, 2022, from
https://cpsc.yale.edu/research/machine-learning

https://www.springboard.com/blog/data-science/machine-learning-skills/
https://www.edureka.co/blog/introduction-to-machine-learning/
https://www.oracle.com/in/big-data/what-is-big-data/
https://csweb.rice.edu/academics/graduate-programs/online-mcs/blog/computer-science-vs-artificial-intelligence-and-machine-learning
https://www.salesforce.com/eu/blog/2020/06/real-world-examples-of-machine-learning.html
https://cpsc.yale.edu/research/machine-learning


OceanofPDF.com

https://oceanofpdf.com/


2
Mathematics for machine learning
DOI: 10.1201/9781003486817-2
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Understand basic mathematics essential for comprehending machine learning concepts.
2. Master the concept of representing machine learning models mathematically, enabling

good understanding and implementation.
3. Develop the capability of converting machine learning problems into formulations for

mathematical optimization.
4. Understand the working principles of machine learning algorithms by analyzing and

comprehending mathematical expressions.
5. Apply mathematical representations to assess algorithmic performance, model behavior,

and problem-solving capability in machine learning contexts.

2.1 Linear algebra
Linear algebra is a fundamental component of mathematics that is essential
for machine learning practitioners. It provides the theoretical foundation
needed to understand and work with various machine learning concepts.
Mastery of linear algebra equips learners with the critical tools and
arithmetic computations required for implementing and optimizing machine
learning algorithms. The following subsections present in detail scalars,
vectors, matrices, eigenvalues, and eigenvectors which are considered to be
the basic concepts of linear algebra.

https://dx.doi.org/10.1201/9781003486817-2


(2.1)

2.1.1 Scalars
In mathematics, a scalar is a measurement that has a magnitude without any
associated direction. Within the era of machine learning or data science,
scalars might represent various features of data points. For instance,
residence datasets with the following features: number of bedrooms, the
total floor area, and the sale price of each house can be represented as
separate scalar numbers. Scalar values are fundamental units used to create
more complex mathematical models and are crucial for carrying out
mathematical computations and analyses in machine learning algorithms.
Scalars cover various numerical values such as integers, decimals, fractions,
and irrational numbers. However, depending on their importance, scalars
can be either positive, negative, or zero. Scalars can be evaluated in
mathematics using standard arithmetic operations such as addition,
subtraction, multiplication, and division.

For example, consider two scalars, a = 5 and b = 3. The sum of these
two scalars is obtained by adding them together, a + b = 5 + 3 = 8.

2.1.2 Vectors
A vector is a collection of numbers that are ordered consecutively.
However, vectors are quantities that can convey direction as well as
magnitude. Equation (2.1) depicts this concept, which can be identified as a
row or column of numbers in lowercase characters, such as v.

v = (v1, v2, v3)

where v1, v2, v3 are scalar values, often real values.
In mathematical operations, vectors can be calculated using standard

arithmetic operations such as addition, subtraction, and multiplication, as



(2.2)

(2.3)

discussed in the subsequent sections.

2.1.2.1 Vector addition
Consider two vectors; a = (a1, a2, a3) and b = (b1, b2, b3). Vector addition
of “a” and “b” is performed element-wise to produce a new vector of the
same length as shown in Equation (2.2).

a + b = (a1 + b1, a2 + b2, a3 + b3)

For example, let us say we have two vectors, a = (2, 4, 6) and
b = (1, 3, 5). To find the sum of these vectors, corresponding components
of the vectors will have to be added to each other, as shown in the
following:

a + b = (2 + 1, 4 + 3, 6 + 5).

Thus a + b is equal to (3, 7, 11)

2.1.2.2 Vector subtraction
Consider two vectors; a = (a1, a2, a3) and b = (b1, b2, b3). Vector
subtraction of “a” and “b” is performed element-wise to produce a new
vector of the same length as shown in Equation (2.3).

a − b = (a1 − b1, a2 − b2, a3 − b3)

For example, let us say we have two vectors, a = (2, 4, 6) and
b = (1, 3, 5). To subtract vector “b” from “a”, the corresponding
components will have to be subtracted from each other as shown in the
following:

a − b = (2 − 1, 4 − 3, 6 − 5).



(2.4)

(2.5)

Thus a − b is equal to (1, 1, 1)

2.1.2.3 Vector multiplication
It is worth noting that multiplication is typically defined for vectors of the
same dimension when dealing with vectors. This is because certain
operations, like the dot product and cross product, require vectors of the
same dimensionality to be performed. Given two vectors a = (a1, a2, a3)

and b = (b1, b2, b3) of equal length, the dot product and cross product of
“a” and “b” are given in Equations (2.4) and (2.5), respectively.

a ⋅ b = (a1 × b1, a2 × b2, a3 × b3)

a × b = (a2 × b3 − a3 × b2, a3 × b1 − a1 × b3, a1 × b2 − a2 × b1)

Using the same vectors as before, a = (2, 4, 6) and b = (1, 3, 5). The
dot product and cross product of these two vectors are:

a ⋅ b = (2 × 1, 4 × 3, 6 × 5)

a ⋅ b = 2 + 12 + 30 = 44. Thus, a ⋅ b is equal to 44.

a × b = (4 × 5 − 6 × 3, 6 × 1 − 2 × 5, 2 × 3 − 4 × 1)

a × b = (20 − 18, 6 − 10, 6 − 4) = (2, −4, 2).

Thus, a × b is equal to (2, −4, 2).



(2.6)

2.1.3 Matrix
A matrix is a grid of numbers arranged in rows and columns. Each number
in a matrix is called an element. In machine learning, matrices are used to
organize data, with each row representing an individual item or sample and
each column representing a feature of that item. In addition, matrices serve
as the foundational representation for datasets in machine learning,
facilitating efficient analysis and processing throughout the machine
learning workflow. A matrix is usually denoted by an uppercase letter (e.g.,
A), and each element is referred to by its two-dimensional subscript of row
(i) and column (j) such as aij as represented in Equation (2.6).

A = ( )

Similar to vectors, matrices can be manipulated using standard arithmetic
operations such as addition, subtraction, and multiplication, as discussed in
the subsequent sections. However, the division of a matrix can only be
performed on each of its elements by a scalar value.

2.1.3.1 Matrix addition
Matrix addition involves adding together corresponding elements of two
matrices with the same dimension to form a new matrix whose elements are
the sum of the respective elements from the two matrices being added
together. In other words, the items in the i-th row and j-th column of
matrices A and B are added together to form a new matrix. Given matrices
A and B in Equations (2.7) and (2.8), respectively, the result of adding the
two matrices is shown in Equation (2.9).

a11 a12 a13

a21 a22 a23



(2.7)

(2.8)

(2.9)

A = ( )

B = ( )

A + B = ( )

For example, given matrices A and B their sum is calculated as follows:

A = ( )

B = ( )

A + B = ( ) = ( )

2.1.3.2 Matrix subtraction
Matrix subtraction can be performed between two matrices with the same
dimension and involves subtracting each element of the second matrix from
its corresponding element of the first matrix to produce a new matrix. In
other words, an element in the i-th row and j-th column of matrix B is
subtracted from the corresponding element in the i-th row and j-th column

a11 a12 a13

a21 a22 a23

b11 b12 b13

b21 b22 b23

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

1 2 3

4 5 6

2 4 6

8 10 12

1 + 2 2 + 4 3 + 6

4 + 8 5 + 10 6 + 12

3 6 9

12 15 18



(2.10)

(2.11)

(2.12)

of matrix A. Given matrices A and B in Equations (2.10) and (2.11),
respectively, the result of subtracting matrix B from A is given as shown in
Equation (2.12).

A = ( )

B = ( )

A − B = ( )

For example, given matrices A and B the subtraction of matrix B from A
is calculated as follows:

A = ( )

B = ( )

A − B = ( ) = ( )

a11 a12 a13

a21 a22 a23

b11 b12 b13

b21 b22 b23

a11 − b11 a12 − b12 a13 − b13

a21 − b21 a22 − b22 a23 − b23

3 5 7

2 4 6

1 2 3

1 2 3

3 − 1 5 − 2 7 − 3

2 − 1 4 − 2 6 − 3

2 3 4

1 2 3



(2.13)

(2.14)

(2.15)

2.1.3.3 Matrix multiplication
Matrix multiplication involves performing the dot product of the rows and
columns of the multiplied matrices. In multiplying two matrices, each
element in the resulting matrix is calculated by taking the dot product of the
corresponding row of the first matrix and the corresponding column of the
second matrix. This process repeats for each element in the resulting matrix.
Given matrices A and B in Equations (2.13) and (2.14), respectively, the
result of multiplying matrices A and B is given in matrix C as shown in
Equation (2.15).

A = ( )

B = ( )

A × B = C = ( )

where:

c11 = a11. b11 + a12. b21

c12 = a11. b12 + a12. b22

c21 = a21. b11 + a22. b21

a11 a12

a21 a22

b11 b12

b21 b22

c11 c12

c21 c22



c22 = a21. b12 + a22. b22

For example, given matrices A and B, their multiplication is calculated as
shown in matrix C as shown in the following:

A = ( )

B = ( )

c11 = 1 × 5 + 2 × 7 = 5 + 14 = 19

c12 = 1 × 6 + 2 × 8 = 6 + 16 = 22

c21 = 3 × 5 + 4 × 7 = 15 + 28 = 43

c22 = 3 × 6 + 4 × 8 = 18 + 32 = 50

Thus,A × B = C = ( ) = ( )

Scalar multiplication can also be applied to a matrix, where a scalar value
is multiplied by each matrix element. Given matrix A in Equation (2.16)
and a scalar value k, the result of multiplying matrix A by the scalar value k
is as shown in Equation (2.17).

1 2

3 4

5 6

7 8

c11 c12

c21 c22

19 22

43 50



(2.16)

(2.17)

(2.18)

A = ( )

A × k = ( )

For example, given matrix A and a scalar value k = 3, their product is
calculated as follows:

A = ( )

A × k = ( ) = ( )

2.1.3.4 Matrix transpose
Matrix transpose is an operation that produces a new matrix by flipping the
rows and columns of a matrix. It involves creating a new matrix by
changing the rows of a matrix into columns and its columns into rows.
Given the matrix A in Equation (2.18), its transpose is denoted by AT as
shown in Equation (2.19).

A =

a b c

d e f

a × k b × k c × k

d × k e × k f × k

1 2 3

4 5 6

1 × 3 2 × 3 3 × 3

4 × 3 5 × 3 6 × 3

3 6 9

12 15 18

⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠



(2.19)

AT =

For example, given matrix A, its transpose is as shown in the following:

A =

AT =

2.1.3.5 Square and rectangular matrix
A square matrix is characterized by an equal number of rows (n) and the
number of columns (m), denoted as n = m. It is differentiated from a
rectangular matrix, where the number of rows and columns are not equal.
Below is an example of a square matrix A, where n = m = 3 and a
rectangular matrix B, where n =2 and m = 3.

A =

B = ( )

⎛⎜⎝a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞⎟⎠⎛⎜⎝1 2 3

4 5 6

7 8 9

⎞⎟⎠⎛⎜⎝1 4 7

2 5 8
3 6 9

⎞⎟⎠⎛⎜⎝1 2 3
4 5 6

7 8 9

⎞⎟⎠1 2 3

4 5 6



2.1.3.6 Triangular matrix
A triangular matrix is a special type of square matrix where all the elements
above or below the diagonal are zeros. Depending on which side of the
diagonal contains the non-zero elements, it can be classified either as an
upper triangular matrix or a lower triangular matrix. As shown in the
following, matrix A is an upper triangular matrix with non-zero elements
located above the diagonal; matrix B is a lower triangular matrix with non-
zero elements located below the diagonal.

A =

B =

2.1.3.7 Diagonal matrix
A diagonal matrix is a square matrix in which any value off the main
diagonal is zero. Elements from top left to bottom right make up the
primary diagonal. In the following example, the diagonal matrix is
indicated by D.

D =

⎛⎜⎝1 2 3

0 4 5
0 0 6

⎞⎟⎠⎛⎜⎝1 0 0
4 5 0

0 0 6

⎞⎟⎠⎛⎜⎝2 0 0

0 3 0

0 0 4

⎞⎟⎠



(2.20)

2.1.3.8 Identity matrix
An identity matrix is also a square matrix in which all elements along the
diagonal are equal to 1, and all other elements off the diagonal are equal to
zero. Matrix I is an example of the identity matrix.

I =

2.1.3.9 Matrix determinant
The determinant of a matrix is a scalar value that can be computed from the
elements of a square matrix. It offers essential details about the matrix, such
as whether it is invertible, singular, or neither. It is used in different fields of
machine learning, data science, data mining, mathematics, and science, to
mention a few, such as computing eigenvalues and eigenvectors, computing
systems of linear equations, calculating areas and volumes, and analyzing
transformations. The determinant of a square matrix A which is denoted by
det (A) or ∣ A ∣ can be evaluated differently depending on the dimension
of a matrix. The formula for determinants of 2 × 2 and 3 × 3 matrices is
given in Equations (2.20) and (2.21), respectively.

A = ( )

det (A) = a11 × a22 − a21 × a12

⎛⎜⎝1 0 0

0 1 0
0 0 1

⎞⎟⎠a11 a12

a21 a22



(2.21)

A =

For larger matrices, the determinant can be calculated using different
methods, such as cofactor expansion, LU decomposition, or Gaussian
elimination, depending on the properties of the matrix and computational
efficiency requirements.

As an example, given matrices A2×2 and B3×3 their determinants can be
evaluated as shown in the following:

A = ( )

det (A) = 2 × 4 − 1 × 3 = 8 − 3 = 5

B =

det (B) = 1(1 × 0 − 4 × 6) − 2(0 × 0 − 4 × 5) + 3 (0 × 6 − 1 × 5)

det (B) = 1(0 − 24) − 2(0 − 20) + 3 (0 − 5)

⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠det (A) = a11(a22 × a33 − a32 × a23) − a12(a21 × a33 − a31 × a23)

+a13(a21 × a32 − a31 × a22)

2 3

1 4

⎛⎜⎝1 2 3
0 1 4

5 6 0

⎞⎟⎠



(2.22)

det (B) = 1(−24) − 2(−20) + 3 (−5)

det (B) = −24 + 40 − 15

det (B) = 1

2.1.3.10 Adjugate of a matrix
The adjugate of a matrix, also known as the adjoint of the matrix (for matrix
A, indicated by adj(A)), can be created in various methods depending on the
matrix’s dimension. In the case of a 2×2 matrix, Equation (2.22) specifies
that the elements along the main diagonal are exchanged, and the signs of
the elements off the main diagonal are modified. Conversely, for a 3×3
matrix, Equation (2.23) computes the cofactors (Cij) of the matrix elements
and proceeds to transpose the resulting matrix. Additionally, each element
of the 3×3 adjugate matrix is the result of computing the determinant of the
2×2 sub-matrix obtained by removing the row and column of the
corresponding element of the matrix multiplied by −1 if the sum of the row
index and column index is odd, as shown in Equation (2.24).

A = ( )

adj(A) = ( )

a11 a12

a21 a22

a22 −a12

−a21 a11



(2.23)

(2.24)

B =

adj B =

T

=

where:

Cij = (−1)i+j× det (Mij)

where:

Mij is the resulting 2×2 sub-matrix after removing the i-th row and j-th
column.

For example, given matrices A2×2 and B3×3 their adjugates are calculated
as follows:

A = ( )

adj(A) = ( )

⎛⎜⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞⎟⎠⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞⎟⎠ ⎛⎜⎝C11 C21 C31

C12 C22 C32

C13 C23 C33

⎞⎟⎠2 3

1 4

4 −3

−1 2



B =

M11 =det ( ) = (1 × 0) − (4 × 6) = −24

Since i + j = 1 + 1 = 2, (−1)i+j = (−1)2 = 1, thus,
C11 = (1) × (−24) = −24

M12 =det ( ) = (0 × 0) − (4 × 5) = −20

Since i + j = 1 + 2 = 3, (−1)i+j = (−1)3 = −1, thus,
C12 = (−1) × (−20) = 20

M13 =det ( ) = (0 × 6) − (1 × 5) = −5

Since i + j = 1 + 3 = 4, (−1)i+j = (−1)4 = 1, thus,
C13 = (1) × (−5) = −5

M21 =det ( ) = (2 × 0) − (3 × 6) = −18

Since i + j = 2 + 1 = 3, (−1)i+j = (−1)3 =– 1, thus,
C21 = (−1) × (−18) = 18

⎛⎜⎝1 2 3
0 1 4

5 6 0

⎞⎟⎠1 4

6 0

0 4

5 0

0 1

5 6

2 3

6 0



M22 =det ( ) = (1 × 0) − (3 × 5) = −15

Since i + j = 2 + 2 = 4, (−1)i+j = (−1)4 = 1, thus,
C22 = (1) × (−15) = −15

M23 =det ( ) = (1 × 6) − (2 × 5) = −4

Since i + j = 2 + 3 = 5, (−1)i+j = (−1)5 = −1, thus,
C23 = (−1) × (−4) = 4

M31 =det ( ) = (2 × 4) − (1 × 3) = 5

Since i + j = 3 + 1 = 4, (−1)i+j = (−1)4 = 1, thus,
C31 = (1) × (5) = 5

M32 =det ( ) = (1 × 4) − (3 × 0) = 4

Since i + j = 3 + 2 = 5, (−1)i+j = (−1)5 = −1, thus,
C32 = (−1) × (4) = −4

M33 =det ( ) = (1 × 1) − (2 × 0) = 1

Since i + j = 3 + 3 = 6, (−1)i+j = (−1)6 = 1, thus,
C32 = (1) × (1) = 1

1 3

5 0

1 2

5 6

2 3

1 4

1 3

0 4

1 2

0 1



(2.25)

C = and adj B =

2.1.3.11 Singular and non-singular matrix
A singular matrix and a non-singular matrix are characterized by having
determinants of zero and non-zero values, respectively. Consequently, the
inverse of a singular matrix does not exist, whereas the inverse of a non-
singular matrix exists. For example, given a singular matrix A, there is no
matrix A−1, such that A × A

−1
or A

−1
× A = I, where I is an identity

matrix. However, if a matrix A is non-singular, there exists A−1 such that
A × A

−1
or A

−1
× A = I.

2.1.3.12 Matrix inversion
Matrix inversion is a process of finding the inverse for a square non-
singular matrix. Given matrix A, its inverse is denoted by A−1. The inverse
of a matrix is computed by dividing each element of the adjugate by the
determinant of the matrix. The formula for computing the inverse of a
matrix A is given in Equation (2.25).

A =

A−1 =
1

det (A)
× adj A =

1
det (A)

×

⎛⎜⎝−24 20 −5

18 −15 4

5 −4 1

⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝−24 18 5

20 −15 −4

−5 4 1

⎞⎟⎠⎛⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎠⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝C11 C21 C31

C12 C22 C32

C13 C23 C33

⎞⎟⎠



For example, given matrix B, its inverse matrix is calculated as shown in
the following:

B =

adj B =

A−1 =
1
1

× =

2.1.3.13 Eigenvectors and eigenvalues
An eigenvector is a non-zero vector v that changes in magnitude but retains
its direction when a square matrix is applied to it as a linear transformation
(i.e., when multiplied by an eigenvalue). The eigenvalue is a scalar value
that represents the scaling factor of the eigenvector and indicates the extent
to which the eigenvector has been stretched. Eigenvectors and eigenvalues
are used to identify directions and patterns in data, reduce complexity, and
make sense of information. Mathematically, given a square matrix A, the
relationship of an eigenvector v of matrix A and its corresponding

⎛⎜⎝1 2 3

0 1 4

5 6 0

⎞⎟⎠det (B) = 1(1 × 0 − 4 × 6) − 2(0 × 0 − 4 × 5) + 3(0 × 6 − 1 × 5) =

≠ 0 (i. e. ,B is a non − singular matrix)

⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝−24 18 5

20 −15 −4

−5 4 1

⎞⎟⎠⎛⎜⎝−24 18 5

20 −15 −4
−5 4 1

⎞⎟⎠ ⎛⎜⎝−24 18 5

20 −15 −4
−5 4 1

⎞⎟⎠



(2.26)

(2.27)

(2.28)

eigenvalue λ is shown in Equation (2.26). In addition, given a matrix A, the
eigenvalue can be computed using Equation (2.27), whereas the eigenvector
can be computed using Equation (2.28).

Av = λv

det (A − λI) = 0

(A − λI)v = 0

For example, given matrix A, its eigenvalues and eigenvectors are
calculated as follows:

A = ( )

det (( ) − λ( )) = 0

det (( ) − ( )) = 0

det (( )) = 0

det ( ) = 0

2 1

1 3

2 1

1 3

1 0

0 1

2 1

1 3

λ 0

0 λ

2 − λ 1

1 3 − λ

2 − λ 1

1 3 − λ



((2 − λ)(3 − λ)) − (1)(1) = (6 − 5λ + λ2) − 1 = λ2 − 5λ + 5 = 0

Finding the eigenvalue λ by using the quadratic formula:

λ =
−b ± √b2 − 4ac

2a

λ =
−(−5)± √52 − (4 × 1 × 5)

2 × 1
=

5 ± √25 − 20
2

=
5 ± √5

2

λ1 =
5 + √5

2
and λ2 =

5 − √5
2

Using Equation (2.28), the eigenvector for the eigenvalue λ1 = 5+√5
2

can be computed as follows:

(A − λ1I)v = (( ) −
5 + √5

2
( ))( ) = 0

− = 0

2 1

1 3

1 0

0 1

v1

v2

⎛⎜⎝⎛⎜⎝2 1

1 3

⎞⎟⎠ ⎛⎜⎝ 5 + √5
2

0

0
5 + √5

2

⎞⎟⎠⎞⎟⎠⎛⎜⎝v1

v2

⎞⎟⎠



(2a)

(2b)

(2c)

= 0

= 0

−1 + √5
2

v1 + v2 = 0

v1 +
1 + √5

2
v2 = 0

From Equation (2a):

v2 =
1 − √5

2
v1

Substituting Equation (2c) in Equation (2b):

v1 + (
1 + √5

2
)(

1 − √5
2

v1) = 0

v1 +
1 − 5

4
v1 = 0

⎛⎜⎝2 −
5 + √5

2
1

1 3 −
5 + √5

2

⎞⎟⎠⎛⎜⎝v1

v2

⎞⎟⎠⎛⎜⎝ −1 + √5
2

1

1
1 + √5

2

⎞⎟⎠⎛⎜⎝v1

v2

⎞⎟⎠



v1 +
−4
4

v1 = 0

v1 − v1 = 0

0 = 0

This equation is always true, which means there are infinitely many
solutions for v1, any non-zero value can be chosen for v1 and the
corresponding value of v2 can be computed by using Equation (2c).
Suppose v1 = 1, then the value of v2 can be obtained as follows:

v2 =
1 − √5

2
v1 =

1 − √5
2

× 1 =
1 − √5

2

Therefore, the possible value of the eigenvector with its corresponding

eigenvalue λ1 = 5+√5
2  is .

In the same fashion, the possible value of the eigenvector for the
eigenvalue λ2 = 5−√5

2  can be calculated.

2.2 Statistics concepts
In machine learning, statistics is the application of statistical concepts and
methods to data analysis, prediction, and model performance assessment.
Effective model training and interpretation is made possible by its
foundation in the understanding of uncertainty, variability, and linkages
within datasets.

⎛⎜⎝ 1

1 − √5
2

⎞⎟⎠



2.2.1 Use of statistics in machine learning
In every aspect of machine learning, statistics plays an important role in
algorithm selections, developments, and real-world applications. The core
of the machine learning process is formed by practitioners’ ability to
understand, assess, and extract insights from data. Machine learning
workflow begins with data preprocessing tasks such as data cleaning,
normalization, and modeling. However, advanced modeling techniques
such as regression, classification, and clustering statistics inform the entire
spectrum of machine learning processes. Furthermore, through statistical
techniques, outliers and extreme values are detected; missing values are
substituted and normalized, therefore guaranteeing the accuracy and
dependability of the dataset.

Descriptive statistics and visualization techniques assist in exploring data
characteristics and relationships, thereby guiding feature selection and
dimensionality reduction in datasets. Hence, statistical methods are used to
build models for both supervised and unsupervised learning tasks.
Additionally, metrics are used to measure how well models perform and
generalize.

Statistics improves decision-making in complicated settings by enabling
probabilistic modeling and uncertainty quantification. However,
frameworks for representing and arguing about uncertainty are provided by
methods such as Bayesian inference and probabilistic graphical models.
Additionally, statistics guides feature selection and engineering efforts,
identifying informative features and reducing dimensionality while
preserving essential data structure. Furthermore, its holistic integration
across the machine learning pipeline empowers practitioners to unlock the
potential of data across various domains. Statistics is basically the base on
which machine learning grows and develops. It helps professionals find



(2.29)

useful insights and make informed decisions in a world that is becoming
more and more data-driven.

2.2.2 Types of statistics
Statistics can be broken down into two types: descriptive statistics and
inferential statistics.

2.2.2.1 Descriptive statistics
Descriptive statistics is the study of how to organize, summarize, and show
data in a way that makes sense and gives us useful information. Its goal is
to show the most important features of a dataset, including trends, ranges,
and patterns of distribution. At the cutting edge of data analysis, descriptive
statistics tries to turn complicated datasets into concepts that are easy to
understand and comprehend. Additionally, it is important to note that
descriptive statistics do not draw conclusions about the whole community
or anything bigger than the dataset it is looking at. Instead, it shows and
summarizes the dataset’s natural properties.

i. Measures of Central Tendency
Mean
Mean is the most commonly used measure of central tendency. It
is computed by adding up all the values of the elements in the list
and then dividing that number by the number of elements.
Equation (2.29) illustrates the computation of the mean.

Mean =
Sum of elements

Total number of elements

Consider a class whose students have obtained the following
marks out of 100: 45, 55, 60, 75, 80, 55, 37, 39, 25, 48, 37, and



68. The mean is calculated as shown in the following:
Sum of elements = 45 + 55 + 60 + 75 + 80 + 55 + 37 + 39 +
25 + 48 + 37 + 68 = 624
Total number of elements = 12.
Thus,

Mean =
624
12

= 52

Median
The median of a set of numbers is the middle value when the
numbers are arranged in ascending or descending order. If the set
contains an odd number of values, the median is the middle
number. If the set contains an even number of values, the median
is the average of the two middle numbers. This measure is less
sensitive to extreme values (i.e., outliers) compared to the mean.
Consider the same example of a class whose students have
obtained the following marks out of 100: 45, 55, 60, 75, 80, 55,
37, 39, 25, 48, 37, and 68. The median is calculated as shown in
the following.
First, arrange the values in ascending order:

25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80
Since the number of elements is 12 (i.e., even), the median
value will be the average of the sixth (i.e., 48) and seventh
(i.e., 55) elements.
Thus,

Median =
48 + 55

2
=

103
2

= 51.5



Mode
The mode is the value that appears most frequently in a set of
data. The set of data may have one mode, more than one mode
(i.e., multimodal), or no mode at all (i.e., when all values occur
with the same frequency). The mode is useful in filling the
missing values for categorical data. Consider a class whose
students have obtained the following marks out of 100: 45, 55,
60, 75, 80, 55, 37, 39, 25, 48, 37, and 68. The mode is calculated
as shown in the following. For simplicity in identifying the mode,
it is advised to arrange the values in ascending order as follows:

25, 37, 37, 39, 45, 48, 55, 55, 60, 68, 75, 80
Since 37 appears most frequently (i.e., 2 times compared to
others) in the set of data, then the mode is 37.

ii. Measures of Dispersion
Measures of dispersion provide insights into the variability of data
from the central tendency such as mean or median. They provide
valuable insights into how widely the values are spread from the center
of the distribution, helping to understand the distribution and potential
outliers within the dataset.

Range
The range is a measure that indicates the extent of variation
within a dataset by quantifying the difference between the largest
and smallest values. It is calculated by subtracting the minimum
value from the maximum value. For example, in a dataset of test
scores {65, 72, 80, 85, 92}, the range would be 92 (i.e., the largest
value) minus 65 (i.e., the smallest value), resulting in a range of
27.
Percentiles



(2.30)

A percentile is a statistical measure that signifies the value below
which a specific percentage of observations in a dataset lies. For
instance, the 20th percentile denotes that the value falls below
20% of the dataset. For example, if the 20th percentile score is 35,
it means that 20% of the total observations have a value less than
35. Consider a dataset showing the heights (in inches) of ten
individuals: {66, 75, 64, 65, 67, 72, 68, 70, 62, and 60}. The
percentiles are calculated as shown in the following steps.

1. Sort the Data: Arrange the data in ascending order.
{60, 62, 64, 65, 66, 67, 68, 70, 72, 75}

2. Calculate the Position: Determine the position of the
desired percentile in the dataset using the formula given in
Equation (2.30).

Position = (
P

100
) × (n + 1)

where:
P is the desired percentile (e.g., 25th percentile, 50th
percentile, etc.), and
n is the total number of data points in the dataset.

For instance, the 25th, 50th, and 90th percentile positions are
computed as follows:
25th Percentile:

Position = (
25
100

) × (10 + 1) = 0.25 × 11 = 2.75th v



(2.31)

50th Percentile:

Position = (
50
100

) × (10 + 1) = 0.5 × 11 = 5.5th valu

90th Percentile:

Position = (
90
100

) × (10 + 1) = 0.9 × 11 = 9.9th valu

3. Interpolate if necessary: If the position is an integer, the
percentile is identified as the value at that position. However,
if the position is not an integer, interpolate between the
values at the nearest lower and higher positions to find the
exact value of the percentile. Consider the integer portion as
R (i.e., the number to the left of the decimal point) and the
fractional portion as FR (i.e., the number to the right of the
decimal point), the value at the nearest lower position as L
and the value at the nearest higher position as H, the
percentile can be computed using Equation (2.31).

Percentile value = FR(H − L) + L

For the 25th percentile in a dataset with 10 data points is the
2.75th value, making
R = 2,FR = 0.75,H = 64, and L = 62, the 25th
percentile is computed as shown in the following:



25th Percentile = 0.75(64 − 62) + 62 = 0.75(2) + 62 =

For the 50th percentile in a dataset with 10 data points is the
5.5th value, making
R = 5,FR = 0.5,H = 67, and L = 66, the 50th
percentile is computed as shown in the following:

50th Percentile = 0.5(67 − 66) + 66 = 0.5(1) + 66 = 66

For the 90th percentile in a dataset with 10 data points is the
9.9th value, making
R = 9,FR = 0.9,H = 75, and L = 72, the 90th
percentile is computed as shown in the following:

90th Percentile = 0.9(75 − 72) + 72 = 0.9(3) + 72 = 74

Quartiles
Quartiles are measures that divide a dataset into four equal parts,
each containing approximately 25% of the data. In terms of
percentiles, the first quartile (i.e., Q1) corresponds to the 25th
percentile, the second quartile (i.e., Q2) corresponds to the 50th
percentile (i.e., median), and the third quartile (i.e., Q3)
corresponds to the 75th percentile. In order to calculate Q1, Q2,
and Q3, refer to the approach used to compute the percentiles.
Interquartile Range
In descriptive statistics, the interquartile range (IQR) is a measure
of statistical spread or dispersion. It is expressed mathematically



(2.32)

as the difference between the first (i.e., 25th percentile or Q1) and
third (i.e., 75th percentile or Q3) quartiles of the data. Figure 2.1
illustrates a box plot, which shows minimum value, maximum
value, IQR, lower quartile, and upper quartile. The box plot is
used to identify and handle outliers and extreme values in the
datasets.

Figure 2.1 IQR using a box plot.

Equation (2.32) illustrates how to compute IQR by subtracting the
first quartile (Q1) from the third quartile (Q3).

IQR = Q3 − Q1

where:
Q1 is the first quartile (25th percentile).
Q3 is the third quartile (75th percentile).

For example, given Q1 = 6 and Q3 = 13.5, then
IQR = 13.5 − 6 = 7.5

Mean Absolute Deviation
Mean Absolute Deviation (MAD) is a statistical measure that
describes the variability in a dataset. It measures how much of an
average absolute difference each data point has from the dataset



(2.33)

average. Furthermore, MAD offers a reliable and understandable
measure of variability in a dataset. The computation of MAD
involves calculating the mean of all the data points, finding the
absolute difference between each data point and the mean,
summing up all the absolute differences and dividing the sum by
the total number of data points, n, as shown in Equation (2.33).

MAD =
∑n

i−1 ∣ xi − mean ∣

n

where:
mean is the mean of the dataset.
n is the total number of data points.
xi represents each data point in the dataset.

For example, the MAD for the dataset {3, 7, 8, 5, 12, 14, 21, 13,
and 18} can be calculated using Equation (2.33) as shown below:

mean =
3 + 7 + 8 + 5 + 12 + 14 + 21 + 13 + 18

9
=

101
9

=

sum of absolute differences = 8.2 + 4.2 + 3.2 + 6.2 + 0.8 +

MAD =
43.8

9
= 4.87

sum of absolute differences =∣ 3 − 11.2 ∣ + ∣ 7 − 11.2 ∣ + ∣ 8
+ ∣ 14 − 11.2 ∣ + ∣ 21 − 11.2 ∣ + ∣ 13 − 11.2 ∣ + ∣ 18 − 11.2 ∣



(2.34)

Variance
Variance measures the dispersion of data points from the mean. It
is calculated by finding the mean of all the data points, summing
the squared differences between the data points and the mean, and
then dividing the sum by the total number of data points, as
shown in Equation (2.34). As opposed to MAD, variance uses the
squares of differences between the data points and the mean. The
challenge with variance is in its unit inconsistency due to
squaring, which makes it less intuitive for interpretation.
Consequently, the standard deviation is often preferred, as it
provides a measure of dispersion in the same units as the original
data. Variance is computed as shown in Equation (2.34).

Variance =
∑n

i−1 (xi − mean)2

n

For example, the variance for the dataset {3, 7, 8, 5, 12, 14, 21,
13, and 18} can be calculated as follows using Equation (2.34).

mean =
3 + 7 + 8 + 5 + 12 + 14 + 21 + 13 + 18

9
=

101
9

=

The sum of the squared differences between each data point and
the mean:

sum = (3 − 11.2)2 + (7 − 11.2)2 + (8 − 11.2)2 + (5 − 11.2)2

+(14 − 11.2)2 + (21 − 11.2)2 + (13 − 11.2)2 + (18 − 11.2)2



(2.35)

sum = (8.2)2 + (4.2)2 + (3.2)2 + (6.2)2 + (0.8)2 + (2.8)2 + (

sum = 67.24 + 17.64 + 10.24 + 38.44 + 0.64 + 7.84 + 96.04

Variance =
287.56

9
= 31.95

Standard Deviation
Standard deviation is a measure of dispersion of data points from
the mean. It can be calculated as the square root of the variance,
as shown in Equation (2.35). Therefore, it provides a measure of
variability in the same units as the original data. Additionally, for
a data point, a higher standard deviation value indicates greater
dispersion from the mean, whereas a lower standard deviation
value suggests closer proximity to the mean. The standard
deviation is computed as shown in Equation (2.35).

Standard Deviation = √ ∑n
i−1 (xi − mean)2

n

For example, the standard deviation for the dataset {3, 7, 8, 5, 12,
14, 21, 13, and 18} can be calculated using Equation (2.35) as
follows:
Since the variance of the data is 31.95, then:

standard deviation = √31.95 = 5.65



Median Absolute Deviation
The Median Absolute Deviation (MedAD) is a robust measure of
the variability or dispersion of a dataset. It is calculated as the
median of the absolute differences between each data point and
the median of the dataset. However, MedAD is less sensitive to
outliers and extreme values compared to standard deviation,
making it suitable for evaluating datasets.

2.2.2.2 Inferential statistics
Inferential statistics is the process of making inferences about a broader
population from a sample of data that has been taken from that population.
Additionally, insights are gained and predictions that apply to the full
population are established through statistical testing and analysis samples.
Regression analysis, hypothesis testing, data manipulation, and
visualization are some of the approaches employed. This process assists in
identifying patterns and extracts valuable information. Even in cases where
data availability is restricted, inferential statistics can be used to draw
defensible inferences about populations and make well-informed decisions.

2.2.3 Types of data
Data can be broadly categorized into two types, numerical and categorical
as described in the following subsections.

2.2.3.1 Numerical data
Numerical data consists of quantifiable data, such as height, weight,
temperature, or test results. Additionally, numerical data refers to quantities
expressed as integers or decimal numbers, often known as floating-point
numbers. This data can be classified into two primary categories:



i. Discrete numerical data are precise and separate quantities, typically
indicating counts or categories. Examples include the rank of students
in a classroom or the number of faculties in a department.

ii. Continuous numerical values include values that can take on any real
number within a certain range. Unlike discrete values, continuous
values have an infinite number of possible values. An example is the
salary of an employee, which can vary continuously within a certain
range.

2.2.3.2 Categorical data
Categorical data represents qualitative values that are typically divided into
categories or groups. It is often expressed as strings or characters. Examples
include names, colors, or any type of non-numeric labels. This type of data
is commonly categorized into two main types: ordinal and nominal. Ordinal
categorical values can be meaningfully ranked or ordered, but the intervals
between rankings may not be uniform. Examples include student grades
(e.g., A, B, C) and satisfaction ratings (e.g., high, medium, low). Nominal
categorical values can be represented in various groups or names, with no
intrinsic order or ranking. They are composed of distinct categories with no
implicit hierarchy. Examples include colors (red, blue, green), courses
(math, science, history), and fruit varieties (apple, banana, orange).

2.2.4 Data distribution
Data distribution refers to how a set of data is spread out and dispersed
throughout a range of possible values. It can be graphically represented
using a histogram, frequency polygon, or box plot. Understanding data
distribution is crucial because it shows patterns that are not immediately
obvious when looking at the data itself. Data distribution can reveal if the



data is symmetrical, how densely the data is clustered, and whether the data
is skewed.

2.2.4.1 Normal distribution in statistics
Normal distribution is a type of data distribution that is also known as a
Gaussian distribution. It is defined by its mean and standard deviation and
is characterized by a bell-shaped curve, as shown in Figure 2.2. Normal
distribution is prevalent in many datasets used in machine learning. For
datasets that do not naturally follow this distribution, efforts are often made
to transform the data into a normal distribution due to its favorable
properties. Additionally, many machine learning algorithms perform
optimally on data that approximates a normal distribution as the distribution
mirrors real-world phenomena, such as salary distributions, where the
majority of employees fall within a medium range, with fewer at the
extremes of low or high salaries. The normal distribution aligns with the
Empirical Rule, which states that about 68% of the data falls within one
standard deviation of the mean, 95% falls within two standard deviations,
and 99.7% falls within three standard deviations.



Figure 2.2 Normal distribution curve.

The normal distribution aligns with the Empirical Rule. The rule outlines
the proportion of data falling within specific ranges of standard deviations
from the mean. According to the rule, approximately 68% of the data lies
within one standard deviation of the mean. This means that the majority of
observations in a normally distributed dataset are clustered within a
relatively narrow range around the mean, as shown in Figure 2.3.



Figure 2.3 68% of all values are within 1 standard deviation of the
mean value.

The Empirical Rule also states that about 95% of the data falls within two
standard deviations of the mean. This wider interval encompasses a
significant portion of the dataset, indicating a broader dispersion of
observations from the mean, as shown in Figure 2.4. While there is greater
variability within this range compared to the first standard deviation, the
majority of data points still exhibit a pattern consistent with the normal
distribution.



Figure 2.4 95% of all values are within 2 standard deviation of
mean value.

The Empirical Rule also asserts that nearly 99.7% of the data falls within
three standard deviations of the mean. This extensive range covers the vast
majority of observations in a normally distributed dataset, reflecting the
symmetrical nature of the bell-shaped curve, as shown in Figure 2.5. The
diminishing proportion of data beyond three standard deviations
underscores the rare occurrence of extreme values in a dataset following the
normal distribution.



Figure 2.5 99.7% of all values are within 3 standard deviation of
mean value.

2.2.4.2 Skewness
Skewness measures the asymmetry of distribution as depicted in histograms
or Kernel Density Estimation (KDE) plots and is usually characterized by a
pronounced peak toward the mode of the data. Skewness is commonly
categorized into two types: left-skewed (i.e., negative skewness) and right-
skewed (i.e., positive skewness) as shown in Figure 2.6. Additionally, some
consider a third category: symmetric distribution, which is indicative of a
normal distribution. A right-skewed distribution is characterized by a long
tail extending toward the positive axis. A suitable example of right-skewed
data is wealth distribution, where only a small percentage of individuals
possess very high wealth, while the majority falls within the middle range.
On the other hand, a left-skewed distribution is marked by a long tail
extending toward the negative axis. For instance, consider the distribution
of grades among students, where fewer students receive lower grades, while
the majority of them fall within the passing category.



Figure 2.6 Skewness.

2.2.4.3 Central limit theorem
The Central Limit Theorem (CLT) states that “regardless of population
distribution, the sampling distribution of the sample mean approaches a
normal distribution as sample size increases.” Figure 2.7 illustrates the
theorem, which allows machine learning practitioners to draw conclusions
about population parameters based on sample means even when the
population distribution is unknown.

Figure 2.7 Demonstration of the Central Limit Theorem.



2.2.5 Applied statistical inference
This section looks into the practical applications of inferential statistics. The
concept entails drawing conclusions about a population using sample data.
Applied statistical inference comprises utilizing statistical methods to assess
data, derive meaningful insights, and drive decision-making across a variety
of domains. As a result, this part focuses on the application of linear
regression as a fundamental approach for predictive modeling and statistical
analysis.

2.2.5.1 Linear regression
Linear regression is a statistical technique that models the relationship
between a dependent variable and independent variables by fitting the
regression line to observed data. As a result, the relationship between the
variables is thought to be linear, meaning that changes in the independent
variable produce changes in the dependent variable(s) at the same pace.
Additionally, it is one of the most basic and widely applied approaches in
statistical modeling and predictive analysis. However, the objective of
linear regression is to find the best-fitting line (or plane, in the case of
numerous independent variables) that minimizes the difference between the
observed data points and the predicted values provided by the linear
equation. Hence, this line is then used to forecast the dependent variable
using the values of the independent variables. This section covers two types
of linear regression: univariate and multivariate linear regressions.

i. Univariate linear regression
Univariate linear regression or simple linear regression describes the
relationship between a single independent variable (X) and one
dependent variable (Y). Hence, the univariate linear regression model
is described by Equation (2.36).



(2.36)

( 2.37)

(2.38)

Y = β0 + β1X + ε

where:
β0 is the intercept, representing the value of Y when X is zero.
β1 is the slope, representing the rate of change in Y for a one-unit
change in X.
ε is the error term, representing the difference between the

observed and predicted values of Y (ε = Yi − Ŷi).

The goal of univariate linear regression is to estimate the values of β0

and β1 that minimize the sum of squared differences between the
observed and predicted values of Y, typically using the method of least
squares. The estimation of coefficients can be obtained through the
following steps.

a. Calculate the Mean: Compute the means of the dependent
variable Y and the independent variable X as shown in Equations
(2.37) and (2.38), respectively.

Y =
1
n

n

∑
i=1

Yi

X =
1
n

n

∑
i=1

Xi

where:
n is the total number of samples.

b. Calculate Covariance and Variance: Compute the sample
covariance between X and Y and the sample variance of X as

¯

¯



( 2.39)

(2.40)

(2.41)

(2.42)

(2.43)

shown in Equation (2.39) and (2.40), respectively.

cov (X,Y) = SXY =
1

n − 1

n

∑
i=1

(Xi − X)(Yi − Y )

Var(X) = SXX =
1

n − 1

n

∑
i=1

(Xi − X)
2

c. Estimate Slope: To estimate the slope (β1) of the regression line,
the covariance of X and Y is divided by the variance of X, as
shown in Equation (2.41).

β̂1 =
cov (X,Y )

Var(X)
=

SXY

SXX

d. Estimate Intercept: To estimate the intercept (β0) of the
regression line, the slope (β̂1) is used to estimate it as shown in
Equation (2.42).

β̂0 = Y − β̂1X

Upon the estimation of β0  and β1, these coefficients can be used
to make predictions about the dependent variable Y for new
unseen data values of the independent variable X and modeled as
shown in Equation (2.43).

Ŷ = β̂0 + β̂1X

¯̄

¯

¯̄



(2.44)

(2.45)

ii. Multivariate Linear Regression
Multivariate linear regression involves more than one independent
variable (predictor variable) to predict a single dependent variable. The
general form of the multivariate linear regression model is shown in
Equation (2.44).

Y = β0 + β1X1 + β2X2 + ⋯ + βkXk + ε

where:
Y is the dependent variable.
X1, X2, …., Xk are independent variables (predictors).
β0,β1, β2, …., βk are the coefficients (intercepts and slopes)
representing the relationship between each independent variable
and the dependent variable.
ε is the error term, representing the difference between the

observed and predicted values of Y (ε = Yi − Ŷi).

In the real scenario the dataset will have multiple k features with n
records; it can be modeled as shown in Equation (2.45).

These n Equations from Equation (2.45) can be written as shown in
Equation (2.46).

Y1 = β0 + β1X11 + β2X12 + ⋯ + βkX1k + ε1

Y2 = β0 + β1X21 + β2X22 + ⋯ + βkX2k + ε2

⋮⋮
Yn = β0 + β1Xn1 + β2Xn2 + ⋯ + βkXnk + εn



(2.46)

(2.47)

= +

In general, for a multiple linear regression, the model with k
independent features (variables) can be simply expressed as shown in
Equation (2.47).

y = xβ + ε

where:

y =

x =

⎛⎜⎝ ⋮

Yn

Y1

Y2

⎞⎟⎠ ⎛⎜⎝1 X11 X12 ⋯ X1k

1 X21 X22 ⋮ X2k

⋮ ⋮ ⋮ ⋱ ⋮

1 Xn1 Xn2 ⋯ Xnk

⎞⎟⎠ ⎛⎜⎝ ⋮

βk

β0

β1

⎞⎟⎠ ⎛⎜⎝ ⋮

εn

ε1

ε2

⎞⎟⎠⎛⎜⎝ ⋮
Yn

Y1

Y2

⎞⎟⎠⎛⎜⎝1 X11 X12 ⋯ X1k

1 X21 X22 ⋮ X2k

⋮ ⋮ ⋮ ⋱ ⋮
1 Xn1 Xn2 ⋯ Xnk

⎞⎟⎠



(2.48)

(2.49)

(2.50)

β = and

ε =

To estimate (predict) the value of a dependent variable from Equation
(2.47), it’s necessary to estimate the parameters (regression
coefficients) using the Ordinary Least Squares (OLS) method that
minimizes the error term as shown in Equation (2.48).

L =
n

∑
i=1

ε2
i = ε′ε = (y − xβ)′(y − xβ)

The resulting least squares estimate is shown in Equation (2.49).

β̂ = (xTx)
−1
xTy

Since the estimation of dependent variable can be obtained by ŷ = xβ̂,
then the equation of a multivariate linear regression model can be
obtained as shown in Equation (2.50).

ŷ = x(xTx)
−1
xTy

⎛⎜⎝ ⋮

βk

β0

β1

⎞⎟⎠⎛⎜⎝ ⋮

εn

ε1

ε2

⎞⎟⎠



2.3 Probability theory
Probability theory is a branch of mathematics that studies random events
and the likelihood of their occurrence. It provides a mathematical
framework for quantifying uncertainty and predicting the probability of
specific outcomes in events with multiple possible results. Understanding
probability theory is crucial for machine learning practitioners, as it
underpins many machine learning algorithms. The subsequent subsections
offer a comprehensive overview of key probability concepts, helping
readers build a solid foundation in probability theory and its applications in
machine learning.

2.3.1 Sample spaces and events
Probability theory entails fundamental concepts like sample space,
probability distributions, and random variables to calculate the likelihood of
an event to occur. A sample space is the collection of all conceivable
experiment results. It comprises all possible outcomes that could occur
during an experiment. For example, when flipping a coin, the sample space
has two possible outcomes: heads or tails. An event is a subset of the
sample space that denotes specific outcomes or combinations of outcomes.
Events can range from basic (like flipping a coin) to compound (like
flipping a coin twice and getting heads both times). Understanding sample
spaces and events is critical for comprehending probability and generating
predictions in a variety of domains. This is where probability theory is
heavily used to quantify uncertainty and make decisions. The following are
the types of events:

i. Independent Events



These are the events that occur without being influenced by other
factors. This implies that the outcome of one event does not affect the
outcome of another.

ii. Dependent Events
These are events that are influenced by prior outcomes. This suggests
that the occurrence of one event has a considerable impact on the
probability of the succeeding event.

iii. Mutually Exclusive Events
These are events that are characterized by their inability to occur
simultaneously. When one of these events takes place, the occurrence
of the others is precluded.

iv. Equally Likely Events
These are events that share an identical probability of happening. This
implies that, under similar conditions, each of the events has an equal
chance of occurrence.

v. Exhaustive Events
These are events that encompass all possible outcomes within the
sample space of an experiment. They essentially account for every
conceivable result that could arise from the given set of circumstances.

2.3.2 Probability
Probability is defined as the ratio of the number of favorable outcomes to
the total number of possible outcomes. Suppose S is the sample space,
representing the set of all possible outcomes of an experiment and an event
A is a subset of sample space S. Hence, the probability of an event A
denoted as P(A) is defined as the ratio of the number of favorable outcomes
for event A denoted as n(A) to the total number of possible outcomes in the



(2.51)

sample space denoted as n(S). Mathematically, P(A) is computed as shown
in Equation (2.51).

P(A) =
n(A)

n(S)

2.3.3 Probability measures
A probability measure assigns numerical values to events within a sample
space, reflecting the likelihood of occurrence of those events. It provides a
formal framework for quantifying uncertainty and making predictions in
various fields, including statistics and machine learning. A probability
measure P on a sample space S satisfies the following properties:

i. Non-negativity
This property states that the probability of an event A must be a non-
negative real number. In mathematical terms, the property is
represented as P(A) ≥ 0 for all events A.

ii. Normalization
This property states that the total probability assigned to the entire
sample space is equal to 1. Mathematically, for a sample space S, the
property is represented as P(S) = 1.

iii. Additivity
The additivity property of a probability measure applies to mutually
exclusive events. The additivity property states that the probability of
the union of two mutually exclusive events is equal to the sum of their
individual probabilities. If A1, A2, … are disjoint events (i.e.,
Ai ∩ Aj = 0  whenever i ≠ j), then

P(A1 ∪ A2 ∪ …) = ∑
i

P(Ai).



(2.52)

2.3.4 Conditional probability
Conditional probability is a measure of the likelihood of an event occurring
given that another event has already occurred with a certain probability. It is
denoted by P(A ∣ B), where A represents the event of interest and B
signifies the condition under consideration for evaluating the probability.
Mathematically, conditional probability is computed as shown in Equation
(2.52).

P(A ∣ B) =
P(A ∩ B)
P(B)

where:

P(A ∣ B) is the conditional probability of event A given event B has
occurred.
P(A ∩ B) is the joint probability of events A and B occurring together.
If the two events (A and B) are independent (i.e., mutually exclusive
events), then P(A ∩ B) = P(A)P(B). Thus, the conditional
probability becomes P(A ∣ B) = P(A). This is equivalent to stating
that the observation of B has no impact on the probability of A.
P(B) is the probability of event B occurring.

2.3.5 Bayes’ theorem
Bayes’ Theorem is an important concept in probability theory that offers a
method for updating beliefs about the probability of an event occurring
based on new evidence. It is a cornerstone in various fields such as
statistics, machine learning, and AI. Mathematically, the theorem relates the
conditional probability of an event A given event B (i.e., the posterior
probability) to the conditional probability of event B given event A (i.e., the



(2.53)

likelihood), along with the prior probabilities of events A and B occurring
independently. The formula of Bayes’ Theorem is given in Equation (2.53).

P(A ∣ B) =
P(B ∣ A) ⋅ P(A)

P(B)

where:

P(A ∣ B) is the conditional probability of event A given event B has
occurred.
P(B ∣ A) is the conditional probability of event B given event A has
occurred.
P(A) is the probability of event A occurring.
P(B) is the probability of event B occurring.

2.3.6 Random variables
A random variable is a mathematical function that assigns a numerical value
to each possible outcome of a random experiment. In simpler terms, a
random variable is a variable whose value is determined by the outcome of
a random process. There are mainly two types of random variables: discrete
and continuous, as described in the following.

i. Discrete Random Variables
These are variables that take on a countable number of distinct values.
The possible values of a discrete random variable can be listed, and
there are gaps between them. Examples of random variables include
the number of heads in a series of coin flips or the count of emails
received in a day.

ii. Continuous Random Variables



(2.54)

(2.55)

These are variables that can take any value within a given range. The
possible values form a continuous interval, and there are no gaps
between them. Examples include the height of individuals in a
population, the time it takes for a reaction to occur, or the temperature
at a specific location.
  Random variables are denoted by X and their possible values are
often denoted by lowercase letters, e.g., x. The probability distribution
of a random variable describes the likelihood of each possible value
occurring.

2.3.7 Expectation
Expectation or mean represents the average value that one would expect the
random variable X to take over a large number of repetitions of an
experiment. It is denoted by E(x) or μ and is a measure of central
tendency.

For a discrete random variable X, with probability mass function
P(X = xi) and corresponding values xi, the expectation is denoted in
Equation (2.54).

E(X) = ∑
i

xi ⋅ P(X = xi)

For a continuous random variable X, with probability density function
f(x), the expectation is denoted in Equation (2.55).

E X =

∞

∫

−∞

x ⋅ f x dx
⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠



(2.56)

(2.57)

2.3.8 Variance
The variance of a random variable X is a measure of the spread or
dispersion of its values around the mean or expected value. It quantifies the
degree to which individual observations deviate from the average. Variance
is denoted as Var(x) or σ2.

For a discrete random variable X, with probability mass function
P(X = xi) and corresponding values xi and expected value μ, the
variance is calculated as indicated in Equation (2.56).

Var(X) or σ2 = ∑
i

(xi − μ)2 ⋅ P(X = xi)

Whereas, for a continuous random variable X, with probability density
function f(x) and expected value μ, the variance is computed as shown in
Equation (2.57).

Var X or σ2 =

∞

∫

−∞

(x − μ)2 ⋅ f x dx

2.3.9 Standard deviation
The standard deviation is a statistical measure that quantifies the amount of
variation or dispersion within a set of values. Standard deviation is the
square root of variance. Additionally, it shows how individual data points
deviate from the dataset’s mean. Hence, a low standard deviation shows that
the data points are close to the mean, whereas a high standard deviation
indicates more variability. Standard deviation is denoted by σ.

⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠



(2.58)

(2.59)

For a discrete random variable X, with probability mass function
P(X = xi) and corresponding values xi and expected value μ, the
standard deviation is given in Equation (2.58).

σ = ∑
i

(xi − μ)2 ⋅ P(X = xi) or σ =

n

∑
i=1

(xi − μ)2

n

Equation (2.59) denotes the variance for a continuous random variable X,
with probability density function f(x) and expected value μ.

σ =

∞

∫

−∞

(x − μ)2 ⋅ f x dx

A probability distribution is a mathematical function that describes the
probability of various outcomes in a random experiment. It offers a way for
assigning probabilities to the numerous outcomes that a random variable
can have. Understanding probability distributions is essential for probability
theory, statistics, machine learning, and data science. Furthermore, when
describing probability measures linked with random variables, alternative
functions such as cumulative distribution functions (CDFs), probability
density functions (PDFs), and probability mass functions (PMFs) are
frequently defined. These functions provide a straightforward approach to
calculating the probability measure that will lead an experiment.

⎷ ⎷⎷ ⎛⎜⎝ ⎞⎟⎠



2.3.9.1 Cumulative distribution function
The cumulative distribution function (CDF) depicts the probability
distribution of a random variable. It also provides the likelihood that the
variable will have a value less than or equal to a given value x. Consider the
random variable X, which represents the adult male height in a population
as measured in feet. The CDF of X, denoted by f(x), indicates the
probability that an adult male is less than or equal to a given height, such as
68 feet. Specifically, f(68) is the probability that an adult male is shorter
than or equal to 68 feet. For any random variable X, the CDF f(x) must meet
the following conditions.

i. Non-decreasing: This feature means that when x increases, the
cumulative probability does not decrease. If f(x1) ≤ f(x2), then
x1 ≤ x2. Where f(x1) and f(x2) denote the CDF values at two points
x1 and x2, respectively.

ii. Right-Continuous: The probability of reaching any particular value
from the right is the same as approaching it from the left. It is denoted

as F(x) = lim
h→0+

F(x + h).

iii. Limits at Infinity: The cumulative probability approaches 0 for values
that are extremely small and approaches 1 for values that are extremely

large. It is denoted as lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1.

2.3.9.2 Probability mass function
The probability mass function (PMF) represents the probability distribution
of a discrete random variable by assigning probabilities to all possible
outcomes. Thus, the PMF is denoted as P(X = x), and it reflects the
probability that the random variable X will take the value x. For a discrete



random variable X, the PMF P(X = x) satisfies non-negativity (i.e.,
P(X) ≥ 0) and summation to 1 (i.e., ∑all x P(X = x) = 1) property. The
PMF is significant in machine learning because it provides a formal
mechanism for describing the probability distribution of discrete random
variables. This allows machine learning systems to represent and reason
about uncertainty in discrete domains.

2.3.9.3 Probability density function
A Probability Density Function (PDF) defines the probability distribution of
a continuous random variable by assigning probabilities to groups of values
rather than individual values. Furthermore, the PDF, indicated as f(x),
represents the likelihood that the random variable X falls inside a specific
range around x. Consider X, a continuous random variable representing an
adult male’s height in a population, measured in feet. Thus, the PDF f(x)
would represent the likelihood that an adult male’s height falls within a
specified range of x feet. A PDF f(x) must satisfy two conditions: non-
negativity (f(x) ≥ 0) and area under the curve (∫_(-∞)^∞f(x)dx = 1). The PDF
is significant in machine learning because it allows for formal modeling and
analysis of continuous random variables. This allows algorithms to
understand uncertainty and make accurate predictions in continuous
domains.

2.3.9.4 Discrete distributions
Discrete probability distributions show the probabilities associated with
discrete random variables, which have separate and independent values.
Discrete distributions include the Bernoulli, Binomial, and Poisson
distributions. These sorts are ideal for modeling events with countable and
accurate outcomes.



(2.60)

(2.61)

(2.62)

2.3.9.5 Bernoulli distribution
The Bernoulli distribution represents a random experiment with only two
possible outcomes (1 for success and 0 for failure), making it ideal for
representing binary data. It is useful in machine learning, particularly for
classification tasks. Furthermore, Equation (2.60) defines the probability
mass function, P(X = k), of a Bernoulli random variable X. In addition,
Equations (2.61) and (2.62) calculate the mean, E(X), and variance, Var(X),
of the Bernoulli Distribution, respectively.

P(X = k) = pk ⋅ (1 − p)1−k

where:

k takes values 0 or 1, and
p represents the probability of success. The distribution is
characterized by a single parameter p, which is between 0 and 1.

E(X) = p

Var(X) = p ⋅ (1 − p)

2.3.9.6 Binomial distribution
The number of successes in a fixed number of independently and identically
distributed Bernoulli trials is represented by a binomial distribution. Each
trial either succeeds with probability p or fails with probability (1 − p).
Equation (2.63) describes the probability mass function for a binomial
random variable X. Equations (2.64) and (2.65) also provide the mean,
E(X), and variance, Var(X), of a Binomial Distribution.



(2.63)

(2.64)

(2.65)

(2.66)

P(X = k) = (kn) ⋅ pk ⋅ (1 − p)n−k

where:

n is the number of trials.
k is the number of successes.
p is the probability of success in a single trial.

(kn) is the binomial coefficient, representing the number of ways to choose
k success from n trials.

E(X) = np

Var(X) = np(1 − p)

2.3.9.7 Poisson distribution
The Poisson Distribution represents the number of events that occur within
a specific time. This distribution is crucial in machine learning for modeling
unusual event occurrences within a set period, which aids in tasks such as
website traffic prediction and data anomaly detection. Equation (2.66)
calculates the PMF for a Poisson random variable X. In addition, the mean
E(X) and variance Var(X) of a Poisson distribution are equal to the average
rate parameter λ, as defined in Equation (2.67).

P(X = k) =
λke−λ

k!

where:



(2.67)

(2.68)

k is the number of events.
λ is the average rate at which events occur.
e is the base of the natural logarithm (i.e., e ≈ 2.71828).

E(X) = Var(X) = λ

2.3.9.8 Uniform distribution
The Uniform Distribution is distinguished by a PMF that is constant
throughout a specified range. The distribution is uniform since all outcomes
within the range have an equal chance of occurring. Furthermore, in
machine learning, the distribution is critical for producing random samples
with similar probability across a certain range and giving a baseline
comparison. As a result, it is critical in producing synthetic datasets for
model training and testing, as well as in assuring random selection process
integrity. It can also generate random starting settings for algorithms.
Equation (2.68) computes the PMF for a uniform random variable X on the
interval [a, b]. For a uniform distribution, the mean E(X) and variance
Var(X) are also calculated using Equations (2.69) and (2.70).

P(X = xi) =
1

b − a + 1

where:

a is the minimum value in the range.
b is the maximum value in the range.
xi is a specific value in the range.



(2.69)

(2.70)

E(X) =
a + b

2

Var(X) =
(b − a + 1)2 − 1

12

2.3.9.9 Continuous distributions
Continuous probability distributions describe the probabilities associated
with continuous random variables. Unlike discrete distributions, where the
random variable can only assume distinct values, continuous distributions
deal with variables that can take on an uncountable infinite number of
values within a given interval. These distributions are vital for machine
learning in modeling real-world phenomena with continuous variables and
facilitate tasks such as regression, density estimation, and generative
modeling. Types of continuous probability distribution include Normal
Distribution, Uniform Distribution, Exponential Distribution, Log-Normal
Distribution, Gamma Distribution, and Beta Distribution.

2.3.9.10 Normal distribution (Gaussian distribution)
The Normal Distribution, commonly referred to as the Gaussian
distribution, is a foundational probability distribution well-known for its
symmetry about the mean. This inherent symmetry implies that data points
close to the mean are more prevalent than those farther away, creating the
distinctive bell-shaped curve appearance when visualized graphically. This
distribution is widely used for data analysis, anomaly detection, and
generating synthetic data in machine learning. The probability density
function for a Gaussian random variable X with a mean E(X) and standard
deviation (σ) is given in Equation (2.71). Moreover, the mean E(X) and



(2.71)

(2.72)

(2.73)

variance Var(X) for a Normal Distribution are calculated as shown in
Equations (2.72) and (2.73), respectively.

f(x ∣ μ,σ) =
1

√2πσ2
e

− (x−μ)2

2σ2

where:

x is the random variable.
μ is the mean, determining the center of the distribution.
σ is the standard deviation, influencing the spread or dispersion of the
distribution.
π is the mathematical constant (i. e. ,π ≈ 3.14159).
e is the base of the natural logarithm ( e ≈ 2.71828).

E(X) = μ

Var(X) = σ2

2.3.9.11 Uniform distribution
The Uniform Distribution is a probability distribution characterized by a
constant PDF over a specified range. In simpler terms, every outcome
within the range has an equal chance of occurring, making the distribution
uniform. This distribution is important in machine learning for fair random
selection processes and a crucial tool in generating random samples that can
be used in algorithm training and testing. The PDF for a uniform random
variable X over the interval [a, b] is given in Equation (2.74). Moreover, the



(2.74)

(2.75)

(2.76)

mean E(X) and variance Var(X) for a uniform distribution are calculated
as shown in Equations (2.75) and (2.76), respectively.

f(x ∣ a, b) =
1

(b − a)

where:

a is the lower bound of the interval.
b is the upper bound of the interval.

E(X) =
a + b

2

Var(X) =
(b − a)2

12

2.4 Calculus
Calculus is essential in machine learning, particularly for optimizing
algorithms and understanding function behavior. Consequently,
differentiation and integration are two fundamental concepts that are often
employed in machine learning.

2.4.1 Differentiation
Differentiation is used to determine the rate at which a function changes. In
machine learning, it is commonly used to optimize models by modifying
parameters to reduce or maximize a specific objective function. The



(2.77)

(2.78)

derivative of a function f(x) with respect to a variable x is represented by f′
(x), which represents the rate of change of f(x) at a particular position. The
derivative is defined as the limit of the difference quotient as the interval
approaches 0, as shown in Equation (2.77).

f′(x) =lim
h→0

f(x + h) − f(x)
h

Let us consider a simple function f(x) = x2. Its derivative f′(x) can be
computed using the power rule of differentiation:

f′(x) = 2x, which is the derivative of f(x) = x2.

2.4.2 Integration
Integration is the reverse process of differentiation; hence, it is used to
calculate the area under a function’s curve. In machine learning, integration
is used in a range of situations, including predicting probabilities in
statistical models. Equation (2.78) represents the integral of a function f(x)
with relation to the variable x.

∫ f(x)dx

Let us consider the function g(x) = 2x. The area under the curve can be
calculated by integrating g(x) with respect to x.

∫ f(x)dx = x2 + C



where:

C is the integration constant.

To get the area under the curve of g(x) = 2x from x = 0 to x = 3, we use the
definite integral:

3

∫

0

2xdx = [x2]
3
0 = 32 − 02 = 9

So, the area under the curve of g(x) = 2x from x = 0 to x = 3 is 9.

2.4.3 Gradient
Gradients are a basic concept in calculus that play a significant role in
model optimization by providing information about the rate of change of
functions. To improve a model’s performance, a cost function that measures
the difference between the model’s predictions and the desired outcome is
usually minimized. In addition, several machine learning optimization
approaches, such as gradient descent and its derivatives, iteratively update
model parameters using the gradient. As a result, in order to achieve
optimal performance, a model’s internal parameters must be modified so
that the cost gradually decreases. Here is when the concept of gradient
comes into play. In mathematics, gradients are the vectors of partial
derivatives of a multivariable function with respect to its input variables.
Geometrically, the gradient indicates the direction of the steepest ascent of a
function’s surface at a particular point. Equation (2.79) defines the gradient
of a function f(x).



(2.79)
∇f = (

∂f
∂x1

,
∂f
∂x2

, … ,
∂f

∂xn
)

where:

∂f
∂xi

 represents the partial derivative of f with regard to the i-th input

variable, xi.

2.4.4 Linear function
A linear function is a mathematical relationship between two variables that
can be represented visually by a straight line, with the dependent variable
moving at a constant rate relative to the independent variable. Let us
consider the simple linear function f(x) = mx + c, where m is the slope
and c is the intercept. As a result, the gradient of f with respect to x is
constant, equal to the slope m across the domain. Hence, the gradient of f is
∇f = m. For example, given a linear function f(x) = 2x + 3, the gradient
of f with respect to x is constant and equal to m = 2 across the domain.
Therefore, ∇f equals 2 for all x.

2.4.5 Quadratic function
A quadratic function is a mathematical relationship between two variables
that can be graphically depicted as a curve in which the dependent variable
increases or decreases in proportion to the independent variable squared.
Let us consider a quadratic function f(x) = ax2 + bx + c, where a, b, and
c are constants. When partial derivatives are computed, the gradient ∇f
varies with x and is influenced by coefficients a and b. The gradient vector
provides insight on the slope of the quadratic curve at various points within
its domain. Consider the quadratic function f(x) = x2 + 2x + 1. Its



gradient with respect to x is ∇f = 2x + 2. At x = 0, the gradient is
∇f = 2, showing a positive slope. As x increases, so does the gradient,
which reflects the quadratic curve’s steeper slope.

2.4.6 Sigmoid function
A sigmoid function is a mathematical function with a distinctive S-shaped
curve. It is commonly used to model nonlinear interactions and map inputs
to a range of 0 to 1. In machine learning, the sigmoid function
σ(x) = 1/(1 + e−x) is frequently employed as an activation function. The
gradient of the sigmoid function with respect to x has a distinct S-shape,
gradually shifting from big positive values to small positive values as x
changes. Let us get the gradient of the sigmoid function
σ(x) = 1/(1 + e−x) with respect to x. Calculating the derivative of σ(x)

yields σ′(x) = σ(x)(1 − σ(x)). This gradient goes smoothly from big
positive values (i.e., for large positive x) to small positive values (i.e., for
large negative x), representing the sigmoid function’s characteristic of
translating input values to the range (0, 1).

2.5 Geometry and trigonometry
Geometry and trigonometry are fundamental mathematical principles with
numerous applications in machine learning, ranging from data
representation to model development. Understanding their applications is
critical for developing efficient algorithms and evaluating their outcomes.
This section looks into the fundamental ideas of geometry and
trigonometry, emphasizing their application in the machine learning
domain.



(2.80)

2.5.1 Geometry in data representation
Geometry provides a foundation for describing data in machine learning,
especially in high-dimensional domains. Distance metrics, inner products,
and norms are important concepts for assessing the similarities and
differences between data points. For example, the Euclidean distance metric
calculates the straight-line distance between points in a geometric space,
making it easier to cluster, classify, and discover anomalies. Consider a
dataset with two-dimensional points reflecting the positions of houses in a
neighborhood. Each data point (x, y) represents the coordinates of a
dwelling on a map. Equation (2.80) is used to calculate the Euclidean
distance between pairs of data points to determine how similar dwellings
are based on their locations.

Distance = √(x2 − x1)2 + (y2 − y1)2

Let us consider two houses with coordinates (2, 3) and (5, 7). The
Euclidean distance between them can be computed as follows:

Distance = √(5 − 2)2 + (7 − 3)2 = √32 + 42 = √9 + 16 = √25 =

Therefore, the Euclidean distance between the dwellings is 5 units. This
distance measure allows us to quantify the spatial links between dwellings
and perform tasks like clustering or identifying nearest neighbors for
recommendation systems.

2.5.2 Trigonometric geometry in model



(2.81)

optimization
Trigonometric functions, particularly hyperbolic functions such as
hyperbolic sine (sinh), cosine (cosh), and tangent (tanh), are important in
model optimization and activation functions in machine learning. To
introduce non-linearity and assist gradient-based optimization, neural
networks frequently use hyperbolic tangent (tanh) and rectified linear units
(ReLU) activation functions. To incorporate non-linear transformations and
normalize activations in deep neural networks, the hyperbolic tangent (tanh)
activation function is used to neuron outputs. This enables more effective
gradient propagation and convergence during back-propagation, resulting in
better training stability and model performance. Assume there is a neural
network consisting of one input neuron, one hidden neuron, and one output
neuron. The hidden neuron will utilize the hyperbolic tangent activation
function, whereas the output neuron will use the rectified linear unit
(ReLU) activation function.

The hyperbolic tangent function, denoted as tanh (x), is defined in
Equation (2.81).

tanh (x) =
sinh (x)
cosh (x)

=
ex − e−x

ex + e−x

where:

sinh (x) =
ex − e−x

2
and

cosh (x) =
ex + e−x

2



(2.82)

(2.83)

Given an input x, the hidden neuron computes its output h using the
hyperbolic tangent activation function, as illustrated in Equation (2.82).

h =tanh (wx + b)

where:

w represents the weight connecting the input to the hidden neuron, and
b is the bias term.

Equation (2.83) shows how the output neuron computes its output y using
the rectified linear unit (ReLU) activation function.

y =max (0, wh + c)

where:

wh represents the weighted sum of the hidden output of the neuron,
and
c is the output bias term of a neuron.

Assume that the weight linking the input to the hidden neuron is w = 0.5,
the bias term for the hidden neuron is b = 1, the weight connecting the
hidden neuron to the output neuron is w′ = −1, and the bias term for the
output neuron is c = 0.5. Given an input x = 2, we can compute the output
of the hidden neuron using Equation (2.82) as follows:

h =tanh (0.5 × 2 + 1) =tanh (2 + 1) =tanh (3)



Using the hyperbolic tangent function, we determine that h is around
0.995. The output neuron’s output is then calculated using Equation (2.83),
as follows:

y =max (0, −1 × 0.995 + 0.5) =max (0, −0.995 + 0.5) =max (0, −

Therefore, the output of the output neuron is 0.

2.6 Information theory
Information theory is an area of mathematics created in 1948 by Claude
Shannon that provides a framework for quantifying and studying
information, uncertainty, and communication systems. In the context of
machine learning, information theory provides important insights into data
representation, model evaluation, and optimization techniques. This
subsection looks into the fundamental concepts of information theory and
its applications in machine learning, with instructive examples.

2.6.1 Entropy and information content
Entropy is a fundamental concept in information theory that describes the
average uncertainty or disorder in a probability distribution. It estimates the
quantity of information needed to describe the results of a random variable.
In machine learning, entropy is an important statistic for assessing
uncertainty in data distributions and model predictions. For example, in
decision tree algorithms, entropy is used to assess the purity of splits and
drive feature selection. The entropy H(X) of a discrete random variable X
with probability distribution P(X) is computed using Equation (2.84).



(2.84)

H(X) = − ∑
x∈X

P(x) log2 P(x)

where:

x is the set of all possible values for X.

Assume we have a random variable X that represents the result of flipping a
fair coin. There are two possible outcomes: heads (H) and tails (T), each
with a chance of 0.5. This distribution’s entropy is computed using
Equation (2.84):

H(X) = −(
1
2

log2
1
2

+
1
2

log2
1
2
) = −(

1
2

−
1
2
) = 1 bit

This indicates that there is 1 bit of uncertainty associated with each coin-
flip outcome.

For example, in classification, consider a binary classification problem
with two classes, where each class occurs with an equal probability
(p = 0.5). The entropy of this distribution is calculated as shown in
Equation (2.84).

This indicates that there is 1 bit of uncertainty associated with each
outcome, reflecting the equal probability of the two classes.

Entropy = −p1 log2 p1 − p2 log2 p2

= −0.5 log2 (0.5) − 0.5 log2 (0.5) = −0.5 × (−1) − 0.5



(2.85)

2.6.2 Mutual information and feature selection
Mutual information measures the amount of information shared between
two random variables. In machine learning, mutual information is utilized
for feature selection, where it quantifies the relevance of each feature to the
target variable. Features with high mutual information are considered
informative and are retained, while irrelevant features are discarded. Mutual
Information I(X;Y ) between two random variables X and Y  with joint
probability distribution P(X,Y ) is calculated as shown in Equation (2.85).

I(X;Y) = ∑
x∈X

∑
y∈Y

P(x, y) log2 (
P(x, y)

P(x)P(y)
)

where:

x and y are the sets of possible values of X and Y, respectively.

Consider a dataset with two variables X and Y, where X represents the
presence (i.e., 1) or absence (i.e., 0) of a particular gene mutation and Y
represents the occurrence (1) or absence (0) of a disease as shown in Table
2.1. The aim is to measure the mutual information between X and Y to
determine the relevance of the gene mutation to the disease.



Table 2.1
The values
of features

X and Y

0 0 500

0 1 200

1 0 100

1 1 600

Using the formula for mutual information in Equation (2.85), the
following calculation can be performed.

This indicates the amount of information gained about the disease (Y) by
observing the gene mutation (X), with higher values indicating a stronger
association.

X Y Count

I(X;Y ) = P(0, 0) log2 (
P(0, 0)

P(0)P(0)
) + P(0, 1) log2 (

P(0, 1)

P(0)P(

+P(1, 0) log2 (
P(1, 0)

P(1)P(0)
) + P(1, 1) log2 (

P(1, 1)

P(1)P(1

=
500
1400

log2 (
500

1400 × 600
) +

200
1400

log2 (
200

1400 × 800
)

+
100
1400

log2 (
100

1400 × 600
) +

600
1400

log2 (
600

1400 × 800
)



(2.86)

2.6.3 Cross-entropy and model evaluation
Cross-entropy is a measure of dissimilarity between two probability
distributions. In machine learning, it is commonly used as a loss function
for training classification models, particularly in neural networks.
Minimizing cross-entropy corresponds to maximizing the likelihood of
predicting the correct class label. For example, in binary classification, the
cross-entropy loss function is defined in Equation (2.86).

Cross − Entropy = −
1
N

N

∑
i=1

[yi log pi + (1 − yi) log (1 − pi)]

where:

yi is the true class label (0 or 1),
pi is the predicted probability of the positive class, and
N  is the number of samples.

2.7 Clustering
As explained earlier in Chapter 1, clustering identifies patterns in unlabeled
data by grouping similar data points into clusters or segments. Although
there are several categories of clustering algorithms, for mathematical
illustrative purposes, the K-Means clustering algorithm based on
partitioning clustering is demonstrated in the subsequent subsection.

2.7.1 K-Means clustering algorithm
The K-Means algorithm is an iterative clustering technique used to partition
a dataset into K distinct, non-overlapping clusters based on a specific
distance metric (e.g., Euclidean distance). It works by iteratively assigning



(2.87)

data points to the nearest cluster centroid and then updating the centroids
based on the mean of the data points assigned to each cluster. This process
continues until convergence, where the centroids no longer change
significantly or a specified number of iterations are reached. The K-Means
clustering algorithm can be performed through the following steps.

i. Initialization
In the initial step, the parameter K is determined, representing the
desired number of clusters. Subsequently, centroids are randomly
initialized for each K cluster to start the clustering process.

ii. Calculation of Distances
In this step, the distance matrix between the centroids and the data
patterns should be created to identify the nearest distance of the data
points to the centroids. Since there are K clusters/centroids and n
samples, the algorithm shall compute n*K geometric distances. There
are several geometric distances that can be used to compute the
distance of the data points to the centroids, including the Euclidean
distance, Manhattan distance, and Chebyshev distance. These
geometric distances, together with their respective formulas are
discussed in the following subsections.

a. Euclidean Distance
The Euclidean distance d is a straight-line distance between two
points in a Euclidean space. It is computed using Equation (2.87).

d =
n

∑
i=1

(xi − yi)
2

where:

⎷



n is the number of dimensions in Euclidean space
xi and yi are points in the Euclidean space

For example, given two points (2, 3) and (5, 7) in a two-
dimensional space, as shown in Figure 2.8, the Euclidean distanc
is computed as follows:

d = √(2 − 5)2 + (3 − 7)2 = √9 + 16 = √25 = 5.

Figure 2.8 Euclidean distance visualization.
b. Manhattan Distance

This is the distance between two points in a grid-based system
like a chessboard. It is calculated by adding the absolute



(2.88)

differences of their coordinates using the formula in Equation
(2.88).

d =
n

∑
i=1

∣ xi − yi ∣

where:
xi and yi are points in the Euclidean space

Consider the same two points (2, 3) and (5, 7) in a two-
dimensional space as shown in Figure 2.9 the Manhattan distance
is computed as follows:

d =∣ 2 − 5 ∣ + ∣ 3 − 7 ∣= 3 + 4 = 7.



(2.89)

Figure 2.9 Manhattan distance visualization.
c. Chebyshev Distance

The Chebyshev distance is the maximum absolute difference
between two points across all dimensions. It is calculated using
the formula in Equation (2.89).

d =max
i

(∣ xi − yi ∣)

where:
xi and yi are points in the Euclidean space.

For the same two points (2, 3) and (5, 7) in a two-dimensional
space, as shown in Figure 2.10, the Chebyshev distance is
computed as follows:



d =max (∣ 2 − 5, 3 − 7 ∣) =max (3, 4) = 4.

Figure 2.10 Chebyshev distance visualization.
iii. Assigning Each Sample in the Cluster

After calculating the distance from each sample to every cluster, the
sample is assigned to the closest centroid (i.e., minimal distance). If a
sample distance to the current centroid is much higher than one of the
other centroid, then the sample should be shifted to the new centroid
with minimum distance. However, when there is no movement of
samples to another cluster anymore, the algorithm should end. Suppose
the assignment of data points to centroids is determined using the



(2.90)

( 2.91)

(2.92)

Euclidean distance, then this can be performed using the formula in
Equation (2.90).

d x, c =
n

∑
i=1

(xi − ci)
2

where:
x is the data point
c is the centroid
n is the number of dimensions

iv. Updation
The updation step involves recalculating the centroids for each cluster
by taking the mean of all data points assigned to the cluster. This will
result in a shift in the positions of the centroids. The new centroid
c(cx, cy) is obtained as shown in Equations (2.91) and (2.92) for the x
and y coordinates of data points, respectively.

cx =
1
l

l

∑
i=1

xi

cy =
1
l

l

∑
i=1

yi

v. Repeating Steps ii to iv
This step involves repeating steps ii to iv until the algorithm
convergence (i.e., when the centroids no longer change) or a specified
number of iterations is reached. Consider a dataset with eight samples

⎛⎜⎝ ⎞⎟⎠ ⎷



and two attributes, as shown in Table 2.2. The task is to assign each
data point to one of three clusters (C1, C2, and C3) using the K-Means
algorithm, with the Manhattan distance serving as the distance
measure. As described earlier in this section, the following steps are
applied to assign each data point to the respective cluster as follows.

Table 2.2
Sample
dataset

1 2 10

2 2 5

3 8 4

4 5 8

5 7 5

6 6 4

7 1 2

8 4 9

i. Initialization Iteration 1:
Since there are three clusters (i.e., C1, C2, C3), then the centroids are
randomly initialized as follows:

C1 : (A1 = 4.00,A2 = 6.33)

No. A1 A2



C2 : (A1 = 6.00,A2 = 5.67)

C3 : (A1 = 2.50,A2 = 5.50)

ii. Calculation of Distances and Assigning Each Sample to a Cluster
Using the Manhattan distance measure, the distance from each data
point to each centroid is calculated as follows.
Distances for data point (2, 10) to each centroid:

Distance to C1 =∣ 2 − 4 ∣ + ∣ 10 − 6.33 ∣= 5.67

Distance to C2 =∣ 2 − 6 ∣ + ∣ 10 − 5.67 ∣= 8.33

Distance to C3 =∣ 2 − 2.5 ∣ + ∣ 10 − 5.5 ∣= 5

Data point (2, 10) is clustered in C3 since it has the smallest distance
of 5 from C3 compared to other clusters (5.67 and 8.33).
Distances for data point (2, 5) to each centroid:

Distance to C1 =∣ 2– 4 ∣ + ∣ 5– 6.33 ∣= 3.33

Distance to C2 =∣ 2– 6 ∣ + ∣ 5– 5 ⋅ 67 ∣= 4 ⋅ 67

Distance to C3 =∣ 2– 2 ⋅ 5 ∣ + ∣ 5– 5 ⋅ 5 ∣= 1

Data point (2, 5) is clustered in C3 since it has the smallest distance of
1 from C3 compared to other clusters (3.33 and 4.67).



Distances for data point (4, 8) to each centroid:

Distance to C1 =∣ 8– 4 ∣ + ∣ 4– 6 ⋅ 33 ∣= 6 ⋅ 33

Distance to C2 =∣ 8– 6 ∣ + ∣ 4– 5 ⋅ 67 ∣= 3 ⋅ 67

Distance to C3 =∣ 8– 2.5 ∣ + ∣ 4– 5 ⋅ 5 ∣= 7

Data point (4, 8) is clustered in C2 since it has the smallest distance of
3.67 from C2 compared to other clusters (6.33 and 7).
The assignment of data points to their respective clusters is shown in
Table 2.3 with each color indicating the data points that belong to the
same cluster.



Table 2.3 Data points assigned to the
clusters for the first iteration

C1 C2 C3

A1 4.00 6.00 2.50

Data Points A2 6.33 5.67 5.50

No. A1 A2 Manhattan distances

1 2 10 5.67 8.33 5.00

2 2 5 3.33 4.67 1.00

3 8 4 6.33 3.67 7.00

4 5 8 2.67 3.33 5.00

5 7 5 4.33 1.67 5.00

6 6 4 4.33 1.67 5.00

7 1 2 7.33 8.67 5.00

8 4 9 2.67 5.33 5.00

iii. Updating Centroids for Iteration 2:
After assigning all samples to clusters, the centroids are recomputed by
finding the mean of all data points in each cluster. The updated
centroids will be used in the next iteration and are calculated as
follows:
Centroid for Cluster 1, C1:

The data samples are (5, 8) and (4, 9).
The mean is ( 5+4

2 , 8+9
2 ) = (4.5, 8.5). Thus, the new centroid is

(4.5, 8.5).



Centroid for Cluster 2, C2:
The data samples are (4, 8), (5, 7), and (4, 6).
The mean is ( 8+7+6

3 , 4+5+4
2 ) = (7, 4.33). Thus, the new

centroid is (7, 4.33).
Centroid for Cluster 3, C3:

The data samples are (2, 10), (2, 5), and (1, 2).
The mean is ( 2+2+1

3 , 10+5+2
2 ) = (1.67, 5.67). Thus, the new

centroid is (1.67, 5.67).
iv. Repeating Steps ii to iv (i2 to i3)

The process of creating data point distances from each centroid,
assigning data points to clusters, and updating centroids are repeated in
this step until the centroids converge or a specified number of
iterations is reached. After two more iterations the centroids of the
clusters were no longer changing with their final values
C1(3.67, 9),C2 (7, 4.33), and C3(1.5, 3.5). The final cluster
assignments are as follows: cluster 1 includes the data points (2, 10),
(5, 8), and (4, 9); cluster 2 includes the data points (4, 8), (5, 7), and (4,
6); and cluster 3 includes the data points (2, 5) and (1, 2) as shown in
Table 2.4.



Table 2.4 Data points assignment to the clusters for
second and third iterations

C1 C2 C3 C1 C2 C3

A1 4.5 7 1.67 3.67 7.00 1.50

Data Points A2 8.5 4.3 5.67 9.00 4.33 3.50

No. A1 A2 Distance 2 Distance 3

1 2 10 4.00 10.67 4.67 2.67 10.67 7.00

2 2 5 6.00 5.67 1.00 5.67 5.67 2.00

3 8 4 8.00 1.33 8.00 9.33 1.33 7.00

4 5 8 1.00 5.67 5.67 2.33 5.67 8.00

5 7 5 6.00 0.67 6.00 7.33 0.67 7.00

6 6 4 6.00 1.33 6.00 7.33 1.33 5.00

7 1 2 10.00 8.33 4.33 9.67 8.33 2.00

8 4 9 1.00 7.67 5.67 0.33 7.67 8.00

2.8 Summary
This chapter equips readers with the requisite mathematical foundation for
undertaking machine learning tasks. It guides learners through a structured
progression, commencing with the fundamental mathematical concepts
critical for comprehending machine learning principles. As readers
progress, they develop the ability to mathematically represent machine
learning models, fostering understanding and confident implementation.
Furthermore, the chapter cultivates the essential skills of translating



machine learning problems into mathematically optimized formulations.
This empowers readers with problem-solving abilities in diverse machine
learning contexts. The chapter also focuses on analyzing and interpreting
mathematical expressions within machine learning algorithms, giving
readers profound insights into the operational mechanisms driving these
algorithms, ultimately enhancing their ability to leverage them effectively.
Finally, the chapter equips learners to apply mathematical representations to
evaluate algorithmic efficiency and model behavior.



Exercises
1. Assume that we have the following set of emails in Table 2.5 classified as either spam or

ham. Given the new email “review us now,” find the probability that the given email (new
email) is (i) Spam or (ii) Ham.

Table 2.5 Email
classification

Send us your password Spam

Send us your review Ham

Password review Ham

Review us Spam

Send your password Spam

Send your account Spam

2. Three factories F1, F2, and F3 in the Dodoma region produce 50%, 25%, and 25%,
respectively, of the total daily output of bottles of grape juice. It is known that 4% of the
bottles of juice produced by Factories F1 and F2 are defective and that 5% of those
produced in F3 are defective. If one bottle of juice is picked up at random from a day’s
production, calculate the probability that it is defective.

3. Suppose you are given the following set of data in Table 2.6 with the Boolean input
variables a, b, and c, and a single Boolean output variable K.

a. Assume we are using a naïve Bayes classifier to predict the value of K from the
values of the other variables.

i. According to the naïve Bayes classifier, what is P(K = 1|a = 1 ∧ b = 1 ∧ c =
0)?

ii. According to the naïve Bayes classifier, what is P(K = 0|a = 1 ∧ b = 1)?

Email Label



Table 2.6
Set of

Boolean
data

1 0 1 1

1 1 1 1

0 1 1 0

1 1 0 0

1 0 1 0

0 0 0 1

0 0 0 1

0 0 1 0

4. For the following scores of students in an examination: 84, 58, 90, 56, 85, 72, 64, 54, 48,
88, 92, and 74. Compute the:

a. Measures of dispersion.
b. Measures of central tendency.
c. Quartiles.
d. The 10th, 20th, 50th, and 70th percentiles.

5. Given the following data points.

2 3

4 7

6 8

8 10

10 12

Calculate the covariance between the predictor variable X and the response variable Y.
6. Given the following data points with two predictor variables X1 and X2 and one response

variable Y.

a B c K

X Y



1 2 3

2 1 6

3 4 7

4 3 10

5 5 12

Calculate the covariance matrix between the predictor variables X1, X2, and the response
variable Y.

7. Consider a neural network with an input x = 2, weight w = 0.5, and bias b = 1. Compute
the output of the neuron using the hyperbolic tangent (tanh) activation function. Then,
repeat the computation for an output neuron using the ReLU activation function with the
output of the hidden neuron as its input and weight w′ = −1, bias c = 0.5.

8. Using eigenvalues and eigenvectors for principal component analysis (PCA), perform
dimensionality reduction on the following dataset.

9. Perform K-Means clustering with K = 2 on the given dataset of points (2, 4), (1.5, 2), (3,
4), (1), (3, 2.5), and (1, 2), using your chosen initial centroids and the Euclidean distance
method for distance calculation.

10. How does centroid initialization affect the K-means algorithm? Brainstorm strategies for
centroid initialization and their implications.

Further Reading
Aggarwal, C. C. (2020). Linear algebra and optimization for machine

learning: A textbook. Springer.
Alencar, M. S., & Alencar, R. T. (2024). Set, measure, and probability

theory. CRC Press.

X1 X2 Y

⎛⎜⎝2 3
3 3

4 3

⎞⎟⎠



Bertsekas, D., & Tsitsiklis, J. N. (2008). Introduction to probability (Vol. 1).
Athena Scientific.

Bhatia, P. (2019). Data mining and data warehousing: Principles and
practical techniques.
https://openlibrary.org/books/OL28937714M/Data_Mining_and_Data_W
arehousing

Borovkov, A. A. (1999). Probability theory. CRC Press.
Bruce, P., Bruce, A., & Peter, G. (2020). Practical statistics for data

scientists (Second Edition). O’Reilly Media, Inc.
Dalgaard, P. (2002). Introductory statistics with R. Springer.
Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for

machine learning. Cambridge University Press.
Evans, M. J., & Rosenthal, J. S. (2004). Probability and statistics: The

science of uncertainty. Macmillan.
Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability.

American Mathematical Society.
Haden, P. (2019). Descriptive statistics. In S. A. Fincher, & A. V. Robins

(Eds.), The Cambridge handbook of computing education research.
Cambridge handbooks in psychology (pp. 102–132). Cambridge
University Press.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means
clustering algorithm. Applied Statistics/Journal of the Royal Statistical
Society. Series C, Applied Statistics, 28(1), 100.
https://doi.org/10.2307/2346830

Mirkin, B. (2005). Clustering for data mining: A data recovery approach.
https://ci.nii.ac.jp/ncid/BA71969362

Montgomery, D. C., & Runger, G. C. (2020). Applied statistics and
probability for engineers. John Wiley & sons.

https://openlibrary.org/books/OL28937714M/Data_Mining_and_Data_Warehousing
https://doi.org/10.2307/2346830
https://ci.nii.ac.jp/ncid/BA71969362


Ross, S. M. (2017). Introductory statistics. In Sheldon M. Ross (Ed.),
Introductory statistics (Fourth Edition, pp. 797–800). Academic Press.

Strang, G. (2019). Linear algebra and learning from data. Wellesley-
Cambridge Press.

Tabak, J. (2014). Probability and statistics: The science of uncertainty.
Infobase Publishing.

Wasserman, L. (2004). All of statistics. Springer.

OceanofPDF.com

https://oceanofpdf.com/


3
Data preparation
DOI: 10.1201/9781003486817-3
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Understand the machine learning process.
2. Identify business problems that can potentially be solved using machine learning

techniques.
3. Use different methods for collecting relevant data for machine learning tasks.
4. Apply various data preprocessing techniques to ensure quality and reliability.
5. Understand ethical considerations in data collection.

3.1 Overview of machine learning process
Generally, the machine learning process entails several steps, such as
understanding the problem to be addressed, collecting and preprocessing
data for training the model, and evaluating and deploying the model. Such a
process is depicted in Figure 3.1. This chapter focuses on the steps related
to data preparation, including business problem identification, defining
success criteria, and data collection and preprocessing. The remaining steps
shown in Figure 3.1 are covered in Chapter 4.

https://dx.doi.org/10.1201/9781003486817-3


Figure 3.1 Machine learning process.

3.2 Business problem identification
A business problem is a specific challenge or issue an organization
encounters in its day-to-day operations. It represents a gap between the
current state of the business and its desired vision, hindering its
performance or preventing it from achieving its goals. Business problems
can vary in nature and complexity, requiring analysis, planning, and
implementation of appropriate solutions to resolve them effectively. In the
machine learning context, a business problem refers to a specific challenge
or issue an organization faces that machine learning techniques can solve.
In other words, a business problem is an opportunity that can benefit from
leveraging data and machine learning techniques to make informed
decisions, improve efficiency, and optimize processes that will ultimately
lead to achieving business objectives. Identifying and clearly defining the
business problem is a critical first step in the machine learning process, as it
establishes the scope and direction for subsequent data collection,
preprocessing, and modeling phases. The business problem may vary based
on the nature of the problem domain. It could involve predicting customer



behavior, disease diagnosis, fraud detection, weather forecasting, and
recommendation systems.

3.3 Success criteria definition
Success criteria refer to the specific benchmarks or goals established for a
machine learning project. It defines what constitutes a successful outcome
for the project and guides the evaluation of its progress and final results.
They are typically defined in the business problem identification phase,
where project objectives are identified and aligned with business goals.
They also serve as a reference point when assessing whether the outcomes
meet the desired requirements and provide business value. Some common
examples of key success criteria include business objectives, measurable
metrics (e.g., key performance indicators), timeframe, and stakeholder
engagement.

3.4 Data collection
Data is essential for accurately designing and implementing machine-
learning models. Therefore, collecting the specific data related to the
problem you intend to solve before embarking on a machine learning
project is essential. Data can be gathered from pre-existing databases or can
be built from scratch. Usually, the nature of the problem domain dictates
how data should be collected and stored. For instance, specialized
equipment is necessary to create a digital image catalogue when tasked with
developing a system to identify skin cancer from skin images. In contrast,
creating a recommendation system for e-commerce does not necessitate
specialized data collection tools. Instead, all requisite data is supplied by
users during product purchases. Notably, data collection process



considerations include the nature of the data and their corresponding
sources as detailed in the following sections.

3.4.1 Nature of data
Data comprises raw facts, figures, or statistics, which may exist in
structured, semi-structured, or unstructured forms. Usually, data is
represented in different formats such as numbers, text, images, audio, video,
or any other format. Structured data is stored in a predefined format and is
usually highly specific. A simple illustration of structured data is a
Microsoft Excel file, in .xls or .csv format, where each column represents
an attribute of the data. Unstructured data includes a multitude of diverse
types of data typically stored in their native formats. A set of photo, video,
or text files can represent unstructured data. Semi-structured data combines
the features of unstructured and structured data. Examples of semi-
structured data include JavaScript Object Notation (JSON), Extensible
Markup Language (XML), and log files. Semi-structured data includes tags
and elements, often called metadata, which serve to group the data and
delineate its storage structure.

3.4.2 Data sources
Machine learning datasets can originate from available or online resources,
or be built from primary sources. The online datasets may be either publicly
accessible or proprietary. Therefore, utilizing these datasets demands
thoroughly examining ethical considerations across different data lifecycle
stages. This covers scrutiny in data sources and collection, data
representation, and data balancing and splitting. It is imperative to uphold
principles of fairness, transparency, and responsible data usage. Delving
into the ethical dimensions at each stage is essential for fostering ethical



practices in machine learning. Table 3.1 outlines a few online data sources
where data for implementing machine learning models can be accessed.



Table 3.1 Online dataset repositories

UCI
Machine
Learning
Repository

The University of California Irvine (UCI) data
repository provides free datasets for empirically
analyzing machine learning models. The UCI
repository can be accessed at
https://archive.ics.uci.edu/ml/.

Kaggle Regarded as one of the most resourceful data
repositories and online communities that support the
development of machine learning models. It is a rich
repository, offering a vast and diverse collection of
free datasets. Additionally, Kaggle has various tools
for data exploration, visualization, and collaboration.
It is a valuable platform for both beginners and
experienced data scientists. The Kaggle repository is
available at https://www.kaggle.com/datasets.

GitHub Stores and publishes open machine learning datasets
that are freely accessible for analyzing machine
learning algorithms. The public datasets on GitHub
can be accessed at
https://github.com/awesomedata/awesome-public-
datasets.

Microsoft
Research
Open Data

The repository contains free accessible datasets to
promote research advancements in different fields,
including computer vision, NLP, and domain-specific
sciences. The repository is available at
https://msropendata.com/.

OpenML An online platform for machine learning that
facilitates the sharing and organization of data,
algorithms, and experiments. It aims to establish a
seamless, interconnected ecosystem that integrates
with existing processes, code, and environments. The

Name of
dataset

repository Description

https://archive.ics.uci.edu/ml/
https://www.kaggle.com/datasets
https://github.com/awesomedata/awesome-public-datasets
https://msropendata.com/


platform enables global collaboration, allowing
individuals to build upon each other’s ideas, data, and
results, regardless of the infrastructure and tools they
use. The OpenML data repository is available at
https://www.openml.org/.

Amazon
Web Service
(AWS)
Datasets

Provides a lot of datasets for quick deployment of
machine learning models when using AWS. Different
third parties provide datasets under varied licenses
that determine in which applications they can be used.
The Amazon datasets repository is available at
https://registry.opendata.aws/.

Zenodo
Open Data
Repository

An open-access platform that hosts a broad spectrum
of research data across disciplines such as healthcare,
agriculture, climate, and cyber security. With robust
metadata standards and versioning capabilities,
Zenodo facilitates collaboration and promotes
transparency in scientific research. The Zenodo open
data repository is available at https://zenodo.org/.

Hugging
Face Dataset

An online platform for accessing and sharing datasets
specifically suited for NLP, computer vision, and
audio tasks. It also contains a variety of pre-trained
models with the necessary tools for effectively using
them. The Hugging Face open data repository is
available at https://huggingface.co/datasets.

Government
Open Data
Portals

Are operated by governments, regional integration
bodies, and international organizations thereby
providing access to a wide range of datasets related to
public services, the environment, demographics, and
other topics. Examples of such portals are hosted by
Tanzania, the United States of America, Canada, the

Name of
dataset

repository Description

https://www.openml.org/
https://registry.opendata.aws/
https://zenodo.org/
https://huggingface.co/datasets


European Union, and the World Bank
at:https://www.nbs.go.tz/
https://www.data.gov/

https://open.canada.ca/en

https://www.europeandataportal.eu/

https://data.worldbank.org/

Alternatively, the Google search engine can be used to search for datasets
using relevant keywords and filter the results based on the dataset formats
(e.g., images, text, and videos) or accessibility (i.e., freely available or not).

3.4.3 Data curation
Data curation is essential when gathering information from multiple
sources. This process involves collecting and standardizing data from
diverse origins into a unified format. It entails employing relevant analysis
tools and filtering methods to discern valuable data from irrelevant ones
during integration. Typically, data curation tools aid in integrating,
cleansing, adding metadata, validating, and preserving collected data.
Ultimately, data curation enhances dataset accessibility and comprehension,
making them more manageable for users to locate and interpret. Notable
data curation tools include Alation, Talend, Stitch Data, Informatica,
Ataccama ONE, and Alteryx. The choice of the exact tool depends on the
properties and size of the data for a particular machine learning problem. A
proper data curation process will ensure that the data remaining for labeling
tasks are only those likely to enhance the performance of the models.

Name of
dataset

repository Description

https://www.nbs.go.tz/
https://www.data.gov/
https://open.canada.ca/en
https://www.europeandataportal.eu/
https://data.worldbank.org/


3.4.4 Data labeling
Data labeling is the process of identifying raw data and adding informative
and meaningful labels to provide context for a machine learning algorithm
to learn from. For instance, labels might indicate whether a photograph
contains a dog or a cat, identify the words spoken in an audio recording, or
specify whether an X-ray image shows a tumor. Data labeling is essential
for several applications, such as image and text classification, action
recognition, intrusion detection, and speech recognition. Figure 3.2
illustrates an example of labeled and unlabeled image samples. Notably, a
labeled dataset from which an algorithm can learn is required for supervised
learning. Typically, data labeling begins with the respective domain’s
experts (labelers or annotators) being asked to describe or group unlabeled
pieces of data in their respective categories. For example, a medical domain
expert may be requested to tag X-ray images based on the condition “Does
the image contain signs of tuberculosis or not.” Tagging can be a “yes” or
“no” answer corresponding to whether a patient is infected with
tuberculosis or not, respectively.

Figure 3.2 Labeled and unlabeled image samples.

3.4.5 Ethical considerations in data collection
Data often inherits societal biases that can be perpetuated by machine
learning algorithms and impact outcomes, thereby reinforcing existing
disparities and inequalities. Thus, it becomes imperative to conscientiously



address ethical concerns throughout the data collection process, as
highlighted in Table 3.2.



Table 3.2 Ethical considerations in data collection

Privacy Privacy concerns often stem from data containing
personal and sensitive information, such as names,
addresses, and financial details. Collecting and
securely storing data is crucial to reduce the risk of
unauthorized access. Individuals should also maintain
control over their data usage.

Accuracy Ensuring data accuracy requires rigorous validation
and verification procedures to confirm precision and
reliability. Thorough scrutiny and validation checks
help prevent disseminating potentially misleading or
inaccurate information.

Security Employ encryption and access controls during data
collection to restrict access to unauthorized
personnel, mitigating the risk of unauthorized
disclosure. Regularly audit data handling processes
and comply with legal standards to promptly detect
and address security vulnerabilities or breaches.

Ownership Ethical data handling requires respecting individuals’
rights to control their data and acknowledging their
ownership. Organizations should establish clear
policies on data ownership, outlining guidelines for
control and usage to uphold ethical standards.

Transparency Data transparency entails openly acknowledging
biases, errors, or uncertainties within datasets,
enabling informed decision-making and reducing
potential harm. Embracing data transparency
cultivates trust, accountability, and responsible data
usage in machine learning applications.

Bias and
Fairness

Data collection practices must avoid unfairly
targeting or excluding specific groups, necessitating

Ethical issue Description



vigilance against potential biases in sampling and
collection methods.

Informed
Consent

Individuals whose data is collected should be
informed about the purpose of the data collection, its
intended use, and any potential benefits or risks.
Besides, participants should also be allowed to
decline participation or withdraw their consent at any
time.

Accessibility It entails removing barriers to data access, such as
cost or technical expertise, and providing
documentation and tools to facilitate understanding
and utilization of the data. Prioritizing data
accessibility promotes inclusivity, transparency, and
collaboration, enabling broader participation and
societal benefits from machine learning
advancements.

3.5 Data preprocessing
Usually real-world data typically contains noise, missing values, duplicate
values, and outliers, and it may be in unusable format—making it
unsuitable for directly developing machine learning models. Therefore, data
preprocessing targets transforming raw data into a format appropriate for
training machine learning algorithms. Data preprocessing can significantly
affect the performance of a machine learning model. It entails critical steps,
including data cleaning, transformation, dimensionality reduction, and
integration, as described in the following subsections.

Ethical issue Description



3.5.1 Data cleaning
Data cleaning deals with fixing missing, outlier, duplicate, corrupted,
incorrectly formatted, and incorrect values within a dataset. Data with such
issues could lead to unreliable machine learning models. Generally, data
cleaning helps in reducing errors and improving data quality. Although the
data cleaning process can be time-consuming and tedious, it should not be
ignored. Several techniques can be used in data cleaning depending on the
nature of the dataset, as described in the following subsections.

3.5.1.1 Removing duplicate or irrelevant values
Duplicate values in datasets often stem from different sources, such as data
entry errors, merging data from multiple sources, or incomplete deletion of
redundant records. Addressing duplicates is a critical aspect of the data-
cleaning process. Failure to remove duplicates can lead to redundant
information being fed into the model, resulting in wasted computational
resources and skewed results. The typical approach to handling duplicates
involves identifying and removing them, retaining only one unique
observation for each duplicated entry. Similarly, irrelevant values not
aligning with the problem at hand require attention. These values can be
managed by deleting the corresponding observations or replacing the
irrelevant ones with accurate ones, if available or retrievable.

3.5.1.2 Fixing structural errors
Structural errors occur due to typos, incorrect capitalization, or improper
naming conventions. Such inconsistencies may lead to mislabeled
categories or classes. For instance, you may find “N/A” and “Not
Applicable” in a dataset, but they should be considered in the same
category. In the case of structural error, the data (or entries) of the same
category should be renamed using the same convention.



3.5.1.3 Detecting and removing outliers
Outliers refer to the data points in a dataset that are beyond a predefined
distribution range and fall far from the mean of the dataset’s observations.
Usually, outliers appear not to fit within the dataset under analysis. Outliers
could lead to unrealistic model performance and inflation of error metrics
which give higher weight to large errors. Outliers can easily be detected
using visualization techniques such as clustering, z-score, and box plots.

3.5.1.4 Handling missing values
Missing values are among the common challenges in datasets, occurring
when certain attribute values are missing. Most machine learning
algorithms cannot handle missing values, which may lead to errors or
biased models if trained on such data. Failure to adequately address missing
values can result in skewed models and prone to incorrect results. Missing
values can be addressed using different approaches, such as:

Dropping a feature or record with missing values. This is fairly simple
but may lead to loss of information. Therefore, careful consideration,
such as dataset size, is needed before dropping a feature or record.
Filling missing values based on the measures of central tendency
(mode, mean, and median). However, there is a risk of compromising
data integrity due to working on assumptions rather than actual data.

3.5.1.5 Validation
Data validation involves inspecting data quality before training a machine
learning algorithm. The following questions should be answered as part of
data validation:

i. Does the data make sense?
ii. Does the data adhere to domain-specific rules?



iii. Does the data support or refute your working theory or provide new
insights?

iv. Can you identify trends in the data to assist with developing your next
theory?

v. If not, is that because of issues in data quality?

3.5.2 Data Transformation
Data transformation entails converting data between formats, such as
converting numerical data to categorical data through binning or categorical
data to numerical data via encoding. Moreover, data transformation
involves scaling the data in a suitable range through normalization. The
following subsections describe common data transformation techniques.

3.5.2.1 Binning
Binning or discretization transforms numerical attributes into categorical
equivalents. For instance, age values can be discretized into categories like
20–39, 40–59, and 60–79. Binning can enhance machine learning model
accuracy by mitigating noise or non-linearity, aiding in outlier
identification, and smoothing data through techniques like equal bin
frequency, means, median, and boundaries.

3.5.2.2 Encoding
Machine learning algorithms operate solely on numerical data and cannot
comprehend textual, date, or other non-numeric values. Encoding translates
these diverse values into numerical formats, enabling algorithms to interpret
and leverage them for learning and predictive tasks. Consequently,
converting categorical values into numerical ones via encoding becomes
imperative. Common encoding techniques in machine learning include
Label Encoding, where each category receives a unique numerical label,
and One-Hot Encoding, which generates binary columns representing the



(3.1)

presence or absence of each category in the dataset. For instance, when
applying One-Hot Encoding to a binary attribute like gender, with male or
female values, the resulting encoded values become zero (0) or one (1),
respectively, indicating male or female. Notably, encoding methods are
important in the preprocessing stage before inputting data into machine
learning algorithms. This ensures efficient interpretation of diverse
information types within the dataset, thus deriving meaningful patterns.

3.5.2.3 Data normalization
Data normalization refers to changing the numerical values of attributes to a
common scale without affecting the differences or losing information.
Normalization provides equal weights or importance to each attribute so
that no single attribute influences the performance of a model because of its
large values. For example, a dataset can have several attributes with values
in the order of tens and others in the order of millions. In this case,
normalization will scale down all attributes to a common scale (say 0 to 1).
This process is also known as rescaling attribute values. This technique is
particularly useful for algorithms that rely on distance measures, such as k-
NN. The most widely used technique is min-max normalization, which
performs a linear transformation of the original data to fit it in the range of
0 to 1. By so doing, it ensures that all attributes are handled equally
regardless of their original values. It is computed by subtracting the
minimum value from each feature and dividing the result by the range
(maximum-minimum) as expressed in Equation (3.1).

normalized_value =
(feature_value − min_value)

(max_value − min_value)



(3.2)

Tables 3.3 and 3.4 show examples of features before and after min-max
normalization, respectively.

Table 3.3 Features before normalization

0 6 148 72 35 0 33.6 0.627 50

1 1 85 66 29 0 26.6 0.351 31

2 8 183 64 0 0 23.3 0.672 32

Table 3.4 Features after normalization

0 0.353 0.744 0.590 0.354 0.000 0.501 0.234 0.48

1 0.059 0.427 0.541 0.293 0.000 0.396 0.117 0.16

2 0.471 0.920 0.525 0.000 0.000 0.347 0.254 0.18

3.5.2.4 Standardization
Standardization transforms numerical data to have zero mean and unit
standard deviation. Unlike normalization, which scales the data within a
specific range, standardization focuses on centering the data around the
mean and adjusting its distribution. The most commonly used
standardization technique is z-score, which transforms features from
differing means and standard deviations to a standard Gaussian distribution.
Z-score is the most suitable technique when there are outliers in the dataset.
The z-score standardization formula is expressed in Equation (3.2).

standardize _ value =
(feature _ value − mean)

standard _ deviation

Index Pregnant Glucose BP Skin Insulin BMI Pedigree Age

Index Pregnant Glucose BP Skin Insulin BMI Pedigree Age



Tables 3.5 and 3.6 show examples of features before and after z-score
standardization, respectively.

Table 3.5 Features before z-score standardization

0 6 148 72 35 0 33.6 0.627

1 1 85 66 29 0 26.6 0.351

2 8 183 64 0 0 23.3 0.672

Table 3.6 Features after z-score standardi

0 0.639947 0.848324 0.149641 0.907270 −0.692891 0.2

1 −0.844885 −1.123396 −0.160546 0.530902 −0.692891 −0

2 1.233880 1.943724 −0.263941 −1.288212 −0.692891 −1

3.5.3 Exploratory data analysis
Exploratory Data Analysis (EDA) utilizes statistical summaries and
graphical representations to analyze data, aiming to uncover trends and
patterns or validate assumptions. Its primary goal is to extract meaning
from the data and glean insights before constructing a machine learning
model. EDA goes beyond mere numerical analysis, it delves into
understanding the narrative within the data, unveiling patterns, and

Index Pregnancies Glucose
Blood

pressure
Skin

thickness Insulin BMI

Diabet
pedigr
functio

Index Pregnancies Glucose
Blood

pressure
Skin

thickness Insulin



fostering a profound comprehension of the dataset before it is used in
machine learning algorithms.

EDA typically begins with a descriptive overview of the dataset,
encompassing checks on its dimensions (number of columns and rows),
comprehension of feature data types, and identification of missing values.
Visualizations such as box plots, histograms, and scatter plots serve the
purpose of investigating distributions, central tendencies, and potential
outliers within numerical data. Furthermore, EDA involves the analysis of
relationships between variables, utilizing correlation matrices or pair plots
to discern associations among features. Bar charts or frequency tables come
into play for comprehending distributions across various categories in
categorical data. The key methodologies of EDA are elaborated in the
subsequent subsections.

3.5.3.1 Data summarization
Data summarization provides a summary or report of data in an informative
and understandable manner. The summary contains some necessary
statistical explanations about the data, such as the minimum and maximum
value of the feature across all entries. For instance, in Table 3.7, each
feature column has a summary that shows statistical explanations of the
data, such as count, mean, standard deviation, variance, percentiles, and
interquartile range. The summary helps to show whether the values of the
features are informative and comprehensible.



Table 3.7 Data summarization example

count 768 768 768 768 768

mean 3.845052 120.894531 69.105469 20.536458 79.799479

std 3.369578 31.972618 19.355807 20.536458 115.244002

min 0.000000 0.000000 0.000000 0.000000 0.000000

25% 1.000000 99.000000 62.000000 0.000000 0.000000

50% 3.000000 117.000000 72.000000 23.000000 30.500000

75% 6.000000 140.250000 80.000000 32.000000 127.250000

max 17.000000 199.000000 122.000000 99.000000 846.000000

3.5.3.2 Data visualization
Data visualization is transforming data into a visual or graphical format
(such as graphs, maps, and charts) so that it can be easily understood and
communicate insights from data to a wide audience. Data visualization is
essential as it identifies patterns, trends, outliers, and variable distributions.
It also aids in identifying data quality issues, such as inconsistencies, errors,
or missing values, before the data preprocessing stage. It is particularly
valuable for individuals who may lack technical aspects of the data. By
visually representing the data, complex information becomes more
accessible, facilitating a better understanding of the dataset and aiding in
the effectiveness of data preprocessing. Figure 3.3 depicts an example of
data distribution of a single feature (i.e., age) plotted individually for
distribution analysis.

Pregnant Glucose BP Skin Insulin



Figure 3.3 Data distribution of a single feature.

3.5.4 Types of exploratory data analysis
There are three types of EDA: univariate, bivariate, and multivariate.

3.5.4.1 Univariate
In univariate analysis, one feature (numerical or categorical) is analyzed
independently and in detail. The feature is analyzed to observe and learn its
distribution and central measure of tendency values such as mean, mode,
and median to gain insight into the data. The feature can also be visualized
with the help of graphical tools for easier interpretations. Graphs to
visualize a single feature can be pie charts, bar plots, and histograms, as
shown in Figure 3.4.



Figure 3.4 Univariate analysis example.

3.5.4.2 Bivariate
Bivariate analysis involves the analysis of two independent attributes
simultaneously. The features involved can be numerical, categorical, or any
combination of both. The analysis aims to discover the relationship between
the two attributes if there is a difference or association between them. The
features are visualized in the same plot graph to learn their relationship, as
shown in Figure 3.5. The two features can be visually analyzed by using
any of the following approaches:

Scatterplots and heatmaps (for numerical and numerical attributes).
Stacked column chart, Chi-square test, and Combination chart (for
categorical and categorical attributes).



Line chart with error bars, z-test, t-test, and combination chart (for
categorical and numerical attributes).

Figure 3.5 Bivariate analysis example.

3.5.5 Multivariate
Multivariate analysis is crucial when analyzing more than two independent
features simultaneously, as depicted in Figure 3.6. Multivariate analysis
includes various techniques, such as cluster analysis, factor analysis,
multiple regression analysis, and principal component analysis (PCA),
among others. Such methods facilitate a comprehensive exploration of
complex relationships and patterns across the features, catering to different
characteristics of the dataset. In contrast to univariate analysis, which
focuses on one variable at a time, multivariate analysis considers the
dependencies and interactions between multiple variables. Multivariate
analysis enables a deeper understanding of the underlying structure and
dynamics of the data.



Figure 3.6 Multivariate analysis example.

3.5.6 Dimensionality reduction
High-dimensional datasets are often challenging to visualize and
comprehend. Therefore, dimensionality reduction is usually applied to
convert a dataset from a higher-dimensional space to a lower-dimensional
one while preserving its original information. This technique is utilized
when a dataset comprises many input features. Therefore, the goal is to
eliminate the less important features and avoid complicating the modeling
task. Dimensionality reduction is commonly applied in domains involving
high-dimensional data, for example, signal processing, speech recognition,
and bioinformatics. The following subsections briefly highlight the
common dimensionality reduction techniques.



3.5.6.1 Feature selection
Feature selection is a process of automatically selecting informative
features that have the most significant impact on the performance of a
machine learning model. Having irrelevant features in the dataset can
reduce the performance of machine learning models, especially linear
algorithms like simple linear and logistic regression. The common benefits
of feature selection include the following:

Reduces Overfitting: Feature selection reduces model overfitting by
identifying and using only the most relevant features for model
training, discarding redundant or irrelevant ones. Ultimately improving
the performance of the model.
Reduces Training Time: Fewer features mean that models train faster.

Notably, backward and forward feature elimination methods are the
common techniques used to perform feature selection, as detailed in the
following:
3.5.6.1.1 Backward feature elimination
This technique is employed to systematically remove features that exhibit
minimal impact on predicting the output or dependent feature. It
commences with a full set of features and progressively eliminates the least
influential ones until a specified stopping point is reached. This iterative
process rigorously refines the feature set, enhancing the model’s efficiency
and interpretability. This method ensures the model focuses solely on the
most impactful features, thereby refining predictive accuracy and
streamlining the overall model complexity.
3.5.6.1.2 Forward feature selection
This technique is the inverse of backward feature elimination. In this
approach, features are not removed but progressively added based on their



ability to enhance the model’s performance. This method systematically
evaluates and selects features that can effectively improve the model’s
predictive accuracy, in other words, prioritizing those that yield the highest
increase in performance. Generally, the model refines its understanding by
iteratively including the most influential features, ensuring a more robust
and optimized configuration that bolsters its predictive capabilities.

3.5.6.2 Feature extraction
Feature extraction involves selecting or transforming the most relevant and
informative features from raw data, streamlining it for more effective model
training. This process identifies key patterns or attributes within the data
that contribute significantly to the task at hand, enhancing decision-making
and predictive accuracy in machine learning tasks. For instance, text
analysis may entail converting words into numerical representations or
pinpointing important phrases that convey a sentence’s meaning. In image
processing, it could involve recognizing edges, textures, or shapes that
distinguish one object from another. Eliminating redundant or less
important information aids in focusing on the most crucial aspects that
improve the model’s performance. This streamlined data enhances the
ability of the model to identify essential patterns, leading to more correct
predictions and improved decision-making in machine learning
applications.

The common technique for feature extraction is Principal Component
Analysis (PCA). The PCA is a statistical technique that transforms
correlated features into a set of linearly uncorrelated features through
orthogonal transformation. The resultant features, known as principal
components, capture the essential information in the data while reducing its
dimensionality. PCA evaluates the variance of each feature, prioritizing
those with high variance to retain valuable information and enhance



interpretability. Real-world applications span diverse domains such as
movie recommendation systems, image processing, and optimizing power
allocation in communication channels. PCA can inadvertently amplify
existing biases in the data, potentially resulting in unfair outcomes if the
data is skewed. Therefore, carefully selecting principal components is
crucial to avoid excluding pertinent information and ensure fair and
unbiased classifications.

3.5.7 Data balancing
Data imbalance is a common issue in machine learning, where one class or
category within a dataset has significantly more representation than others.
This can occur naturally, such as in fraud detection, where fraudulent
transactions are far less frequent than legitimate ones, or due to biases in
data collection. Uncorrected imbalances can lead to models that are heavily
biased toward the majority class, thereby underperforming when
encountering samples of the minority classes. Data balancing is a crucial
technique that involves adjusting the distribution of classes to create a more
balanced dataset. This might be achieved through oversampling (replicating
minority class samples), undersampling (removing majority class samples),
or more sophisticated approaches like the Synthetic Minority Oversampling
Technique (SMOTE). It is important to note that data balancing might not
be necessary in all cases. Factors such as the severity of imbalance and
project goals dictate its importance.

3.6 Summary
This chapter provided the key steps in business problem identification, data
collection, and preprocessing in machine learning. It began by underlining
the importance of aligning machine learning initiatives with business goals,



emphasizing the need to contextualize and define problems within the
broader organizational landscape. Furthermore, the chapter explored the
nature of data, highlighting various data sources and their essential
characteristics. Subsequently, the chapter focused on data curation,
cleaning, and labeling, outlining essential procedures to ensure data
accuracy and coherence. It also discussed techniques for managing missing
values and eliminating duplicates, thereby enhancing the integrity of the
dataset. Moreover, the chapter introduced methods for data transformation,
normalization, and exploratory data analysis (EDA) to uncover insights into
data patterns and relationships. Finally, it introduced methods for
dimensionality reduction, feature selection, and the utilization of principal
component analysis (PCA) to streamline data preprocessing for enhanced
model performance.



Exercises
1. Formulate a hypothetical business problem where machine learning can offer significant

value. Describe the problem context, its alignment with business goals, and potential
machine learning applications.

2. Research and compile a list of diverse data sources applicable to weather forecasting.
Discuss the types of data available, their relevance, and the challenges associated with
integrating multiple sources for machine learning models.

3. Devise a comprehensive data collection plan for a healthcare analytics project centered
on patient outcomes. Outline data collection methodologies, anticipated challenges, and
potential strategies to overcome them.

4. Find a dataset with missing and duplicate values from the data repository introduced in
this chapter and implement data-cleaning techniques to rectify these issues. Document the
steps taken and justify the chosen methods for cleaning the dataset.

5. Choose any dataset from the data repositories introduced in this chapter, apply data
transformation techniques like normalization or scaling, and provide visual
representations of the data through exploratory data analysis (EDA) methods. Interpret
any observed trends or patterns.

6. When applying dimensionality reduction methods such as PCA to a dataset with high
dimensions, what are its impacts on data representation and computational efficiency?

7. Choose any dataset with several features from the data repositories introduced in this
chapter, and use feature selection methods to find the most impactful features for model
development. Justify your selection criteria.

8. Analyze possible challenges one may encounter during data collection from highly
specialized domains (e.g., healthcare and autonomous vehicles) and propose strategies to
address them.

9. A financial institution uses historical loan data to train a machine learning model for loan
approvals. Describe potential biases that may manifest in this dataset. Outline practical
strategies to identify and mitigate such biases before and during model development.

10. Discuss the role of dimensionality reduction in preventing model overfitting.



Further Reading
Barga, Roger, Fontama, V., Wee Hyong Tok, Barga, R., Fontama, V., and

Wee Hyong Tok. (2015). Data preparation. In Predictive Analytics with
Microsoft Azure Machine Learning, 45–79.

Berman, Jules J. (2018). Principles and practice of big data: preparing,
sharing, and analyzing complex information. Academic Press.

Bowles, Michael. (2015). Machine learning in Python: essential techniques
for predictive analysis. John Wiley & Sons.

Brownlee, Jason. (2020). Data preparation for machine learning: data
cleaning, feature selection, and data transforms in Python. Machine
Learning Mastery.

Cielen, Davy, & Meysman, Arno. (2016). Introducing data science: big
data, machine learning, and more, using Python tools. Simon and
Schuster.

Dangeti, Pratap (2017). Statistics for machine learning. Packt Publishing
Ltd.

Flach, Peter. (2012). Machine learning: the art and science of algorithms
that make sense of data. Cambridge University Press.

Kelleher, John D., Namee, Brian Mac, & D’Arcy, Aoife. (2020).
Fundamentals of machine learning for predictive data analytics:
algorithms, worked examples, and case studies. MIT press.

Kononenko, Igor, & Kukar, Matjaz. (2007). Machine learning and data
mining. Horwood Publishing.

Pyle, Dorian. (1999). Data preparation for data mining. Morgan
Kaufmann.

OceanofPDF.com

https://oceanofpdf.com/


4
Machine learning operations
DOI: 10.1201/9781003486817-4
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Choose a suitable algorithm depending on the problem at hand and the nature of the data.
2. Explain the key steps for developing a machine learning model.
3. Describe the concepts of overfitting and underfitting and the strategies to mitigate them.
4. Apply optimization techniques for machine learning algorithms to enhance model

performance.
5. Explain the key steps for deploying and monitoring machine learning models to ensure

continued performance.

4.1 Model development
This chapter focuses on the remaining steps of the machine learning
process, as depicted in Figure 3.1. The first step in machine learning
operations is model development, which entails training and evaluation.
Before developing the model, it is necessary to perform data splitting and
select a specific algorithm, as discussed in the following subsections.

4.1.1 Dataset splitting
Dataset splitting involves dividing the dataset into training and testing sets.
The training set is used to train the model, whereas the testing set is used to
assess the performance of the model based on data it has not seen before.

https://dx.doi.org/10.1201/9781003486817-4


The rationale for using a testing set is to avoid assessing a model’s
performance based on seen (training) data, which could lead to unrealistic
results. Dataset splitting can be done in two ways: Hold-Out and Cross-
Validation.

4.1.1.1 Hold-out
Hold-out refers to reserving a subset of the dataset for testing while using
the remainder for training machine learning models. Typically, a dataset is
split in a specific percentage, for example, 70 by 30 or 90 by 10, where the
larger segment set is allocated for training and the smaller segment set for
testing. Usually, the training set is recommended to be in the range of 70%
to 90% of the whole dataset.

4.1.1.2 Cross-validation
Cross-validation involves splitting a dataset into k subsets of equal size
called folds. The model undergoes iterative training on k−1 folds while
being tested on the remaining fold, ensuring that each subset serves both
training and testing purposes. This helps to assess the model’s ability to
generalize to new, unseen data. Note that a k-fold cross-validation technique
helps achieve an unbiased estimate of the model’s performance when only a
limited amount of data is available. Suppose the dataset is split into five
equal subsets, as shown in Figure 4.1, forming a fivefold cross-validation.
This implies that the model will be trained in five iterations. In each
iteration, the model undergoes training utilizing four of the five subsets,
while the remaining subset is used as the testing subset.



Figure 4.1 5-fold Cross-validation example.

4.1.2 Choosing an algorithm
Before building machine learning models, it is essential to determine
appropriate algorithms that align with the problem at hand and the available
dataset. Determining the suitable machine-learning algorithm depends on



various factors such as the problem at hand, algorithm capabilities, and the
computational resources as described in the following subsections.

4.1.2.1 Problem understanding
A thorough understanding of the problem to be solved is crucial. This
includes identifying whether the problem is classification, regression,
clustering, or association rule mining. After identifying the type of problem,
multiple machine learning algorithms within that specific problem category,
as presented in Chapter 1, are trained to build models. Consequently, the
model that exhibits the highest performance is chosen as the most suitable
solution for the identified problem.

4.1.2.2 Algorithm capabilities
Each algorithm possesses unique strengths and weaknesses. For instance,
decision trees excel in interpretability, making them valuable for
understanding the underlying logic of a model, whereas neural networks are
effective at addressing complex patterns within data.

4.1.2.3 Computational resources
Some algorithms might demand substantial computational resources,
particularly when handling large datasets. Consider the computational
complexity of each algorithm and select the one that performs better with
the available resources.

4.1.3 Model training
Model training enables the selected algorithms to extract knowledge from
the provided dataset. It is a critical step where a model progressively
enhances its capability to predict the given data samples. Typically, the
dataset undergoes splitting into training and testing sets, as described earlier
in this chapter. Subsequently, the machine learning model engages with the



training set, iteratively refining its performance by recognizing patterns and
making predictions. This involves adjusting the algorithm’s internal
parameters, often represented as coefficients in a mathematical function, to
capture the underlying patterns in the dataset better. The model refines its
capacity to make accurate predictions for new, unseen data samples through
this iterative process.

4.1.4 Model evaluation
Model evaluation entails evaluating the performance and effectiveness of a
trained model on unseen data from the testing set. It is a crucial step for
determining the ability of the trained model to generalize to new data and
whether it meets the desired objectives of the problem. The primary purpose
of using a testing set is to reveal the performance of the model on real-
world data to ensure its reliability and effectiveness in practical
applications. Several evaluation metrics are used to measure the
performance of the trained model, depending on the nature of the problem.
Table 4.1 presents the commonly used evaluation metrics for classification,
regression, clustering, and association rule problems.



Table 4.1 Performance metrics

Accuracy Binary and multiclass
classification.

Precision (Positive Predictive Value) Binary and multiclass
classification.

Recall (Sensitivity, True Positive Rate) Binary and multiclass
classification.

F1 Score Binary and multiclass
classification.

Area under the Receiver Operating
Characteristic curve (AUC-ROC)

Binary classification.

Log Loss (Cross-Entropy Loss) Binary and multiclass
classification.

Mean Absolute Error (MAE) Regression

Mean Squared Error (MSE) Regression

Root Mean Squared Error (RMSE) Regression

R-squared (Coefficient of Determination) Regression

Silhouette Score Clustering

Support, Confidence, and Lift Association Rules
Mining

The mathematical presentations of the evaluation metrics shown in Table
4.1 are highlighted in the following formulas. Some of these formulas are
derived from a fundamental tool known as the confusion matrix, presented
in Table 4.2. This matrix captures the model’s prediction results by
comparing them with the actual labels in the dataset. At its core, the

Performance metrics Problem type



(4.1)

confusion matrix breaks down the classification results into four distinct
categories:

True Positives (TP): This happens when the outcome is correctly
predicted as positive when it is indeed positive. For example, a spam
email is correctly predicted as spam.
True Negatives (TN): This happens when the outcome is correctly
predicted as negative when it is indeed negative. For example, a non-
spam email is correctly predicted as non-spam.
False Positives (FP): This happens when the outcome is wrongly
predicted as positive when it is indeed negative. This is also known as
the Type 1 error. For example, a non-spam email is wrongly predicted
as spam.
False Negatives (FN): This happens when the outcome is wrongly
predicted as negative when it is indeed positive. This is also known as
the Type 2 error. For example, a spam email is incorrectly predicted as
non-spam.

Table 4.2 Confusion matrix

Predicted positive True Positive (TP) False Positive (FP)

Predicted negative False Negative (FN) True Negative (TN)

Accuracy: This performance metric quantifies the proportion of correctly
classified instances to the total number of instances evaluated. Accuracy is
calculated as shown in Equation (4.1).

Accuracy =
TP + TN

TP + FP + FN + TN

Actual positive Actual negative



(4.2)

(4.3)

(4.4)

High accuracy indicates the model’s ability to make correct predictions,
whereas low accuracy suggests a higher rate of incorrect predictions.

Precision (i.e., Positive Predictive Value): This performance metric
quantifies the proportion of correctly predicted positive instances among all
instances predicted as positive, as given by Equation (4.2).

Precision =
TP

TP + FP

A high precision value signifies that the model has a low rate of false
positives, making it more reliable in its positive predictions.

Recall (i.e., Sensitivity or True Positive Rate): This performance metric
quantifies the proportion of true positive instances correctly predicted by
the model among all actual positive instances as given by Equation (4.3).

Recall =
TP

TP + FN

A high recall value signifies that the model effectively captures a large
proportion of positive instances.

F1 Score (i.e., F-Measure): This performance metric is the harmonic
mean of precision and recall, providing a balanced assessment of the
performance of the model on both positive and negative instances, as given
in Equation (4.4). It is particularly useful in a scenario where the dataset has
a disproportionate distribution of classes (i.e., it is an imbalanced dataset),
as it prevents the evaluation from being overly influenced by the majority
class.

F1 Score = 2 ×
Precision × Recall

Precision + Recall



(4.5)

A high F1 score indicates the model’s strong ability to balance precision
and recall. In contrast, a low F1 score suggests that the model struggles to
achieve a balance between precision and recall, possibly favoring one over
the other.

Specificity: This performance metric measures the proportion of true
negative instances correctly predicted by the model among all actual
negative instances, as given by Equation (4.5).

Specificity =
TN

TN + FP

A high specificity value demonstrates that the model can capture a large
proportion of negative instances.

Area under the Receiver Operating Characteristic Curve (AUC-
ROC): This performance metric visually illustrates the balance between the
true positive rate (i.e., Sensitivity) and the false positive rate (i.e., 1—
Specificity) across different thresholds for the model. The ROC curve
(depicted in Figure 4.2) is generated by plotting the true positive rate (TPR)
against the false positive rate (FPR) across various classification thresholds.
The graph’s diagonal line (y = x) serves as a reference for random guessing.



(4.6)

Figure 4.2 ROC Curves.

The AUC-ROC value closest to the upper left corner signifies strong
model performance in distinguishing between positive and negative
instances. When comparing two ROC curves, the higher and more toward
the upper left corner represents the superior model. AUC-ROC values near
0.5 (at y = x) suggest performance equivalent to random chance, whereas
values below 0.5 indicate a model is performing worse than random
guessing and potentially inverting predictions.

Log Loss (i.e., Cross-Entropy Loss or Logistic Loss): The log loss
metric evaluates a model’s performance when it assigns probability scores
to various classes. It quantifies the disparity between the true label
distribution and the predicted probabilities assigned by the model. Log loss
is computed as given in Equation 4.6.



(4.7)

log Loss = −
1

N

N

∑
i=1

(yi. log (pi) + (1 − yi). (log (1 − pi)))

where:

N is the number of instances in the dataset.
yi is the true label for instance ii (0 or 1).
pi is the predicted probability that instance i belongs to class 1.

Mean Absolute Error (MAE): This performance metric quantifies the
average absolute differences between predicted and actual values, providing
a straightforward and interpretable measure of the model’s accuracy. It
computes the average absolute deviations of predictions from the true
values, as shown in Equation (4.7).

MAE =
1

N

N

∑
i=1

∣ predictedi − actuali ∣

where:

N is the number of instances in the dataset.
predictedi is the predicted value for instance i.
actuali is the true value for instance i.

MAE values vary from 0 to ∞, with lower values signifying higher model
performance. An MAE of zero indicates a perfect model, with predictions
that exactly match the actual data. MAE is also widely employed in cases
where anticipating the precise numeric value is critical, such as finance,
where pricing must be predicted, or demand forecasting.



(4.8)

(4.9)

Mean Squared Error (MSE): This performance metric is used to
quantify the average squared difference between predicted and actual
values. It quantifies the overall accuracy of a regression model by averaging
the squared errors across all instances in the dataset. The advantage of MSE
over MAE lies in its ability to provide greater sensitivity to larger errors and
deviations from true values, facilitating better optimization and model
tuning. MSE is calculated as shown in Equation (4.8).

MSE =
1

N

N

∑
i=1

(predictedi − actuali)
2

where:

N is the number of instances in the dataset.
predictedi is the predicted value for instance i.
actuali is the true value for instance i.

Root Mean Squared Error (RMSE): This performance metric is widely
used to quantify the average magnitude of the errors between predicted and
actual values. It is similar to MSE, but RMSE addresses one of the
limitations of MSE by taking the square root of the average squared
differences. This results in a quantity that is in the same units as the target
variable, making it more interpretable. RMSE is calculated as shown in
Equation (4.9).

RMSE =
1

N

N

∑
i=1

(predictedi − actuali)
2

⎷



(4.10)

where:

N is the number of instances in the dataset.
predictedi is the predicted value for instance i.
actuali is the true value for instance i.

R-squared (i.e., Coefficient of Determination): This performance metric
assesses the model’s goodness of fit by indicating the extent to which the
independent variables elucidate the variability in the dependent variable. It
is calculated as shown in Equation (4.10).

R2 = 1 −
Sum of Squared Residuals (SSR)

Total Sum of Squares (TSS)
=

RSS

TSS
= 1 −

ESS

TSS

where:

RSS is the residuals or regression sum of squares. It measures the
difference between the predicted and mean values of the dependent
variable.
TSS is the total sum of squares. It measures the difference between the
actual and the mean values of the dependent variable.
ESS is the error sum of squares. It measures the difference between the
predicted and actual values of the dependent variable.

The R-squared values vary between 0 and 1, representing the extent to
which the model explains the variance between dependent and independent
variables. A higher value signifies a stronger model fit and better predictive
performance for the dependent variable, while a lower value indicates
limitations in the ability of the model to predict the dependent variable.



(4.11)

Silhouette Score: This performance metric measures the resemblance of
a sample to its assigned cluster (cohesion) compared to other clusters
(separation). Silhouette Score values range from −1 to +1, where a score
close to +1 suggests well-clustered data points, a score close to 0 indicates
an overlapping cluster or a cluster with ambiguous boundaries, and a score
close to −1 suggests potential misassignment of data points to the wrong
clusters. While the Silhouette Score is useful, it should be supplemented
with other validation methods, particularly in scenarios with irregularly
shaped or differently sized clusters. Silhouette Score is calculated as shown
in Equation 4.11.

Si =
bi − ai

max (ai, bi)

where:

ai represents the average distance from the ith data point to other data
points within the same cluster.
bi represents the average distance from the ith data point to data points
in a different cluster, minimized across all clusters.

Support: This performance metric measures how often an itemset appears
in a transaction. It is computed as the ratio of the number of transactions
containing the itemset by the total number of transactions, as shown in
Equation (4.12). The support value ranges from 0 to 1, where 0 indicates
that the itemset does not appear in any transaction, and 1 indicates that the
itemset appears in every transaction. Intermediate values between 0 and 1
represent the proportion of transactions in which the itemset appears. The



(4.12)

(4.13)

higher the value of support the greater the prevalence and importance of the
itemset in the transaction.

Support (X) =
Transactions containing X

Total Transactions

where:

X represents itemsets.

Confidence: This performance metric measures the likelihood that the item
will be present in a transaction given the presence of another related item in
that transaction. Mathematically, confidence is defined as the ratio of the
number of transactions containing both items X and Y to the number of
transactions containing item X as shown in Equation (4.13). The confidence
value ranges between 0 to 1. A value approaching 1 indicates a strong
association, suggesting that the occurrence of Y is highly likely when X is
observed. In contrast, a value close to 0 signifies a weaker connection,
implying that the presence of X provides less certainty about the occurrence
of Y in a transaction.

Confidence (X → Y) =
Support (X, Y)

Support (X)

where:

X → Y represents the association rule where a transaction containing
item X also contains item Y.



(4.14)

Lift: This metric quantifies the strength of association between two items
beyond what would be expected by chance. It compares the likelihood of
the items occurring together in transactions to the likelihood of the items
occurring independently of each other. Mathematically, Lift is computed as
shown in Equation 4.14.

Lift (X → Y) =
Support (X, Y )

Support (X) ∗ Support (Y )

The range of Lift values theoretically ranges from 0 to positive infinity.
However, in practice, the interpretation of Lift values can be categorized as
follows. A Lift value exceeding 1 signifies a positive association between
items. A Lift value precisely at 1 indicates no association beyond what
would be expected by chance. Conversely, a Lift value below 1 suggests a
negative association.

4.1.5 Overfitting and underfitting
Usually, the desired goal is to get a model that is well generalized on the
whole training set and not specific details of specific data points. Usually,
when the model fails to generalize it overfits. Overfitting happens when the
model achieves a high training accuracy yet performs poorly when
encountering unseen data. Conversely, underfitting happens when the
model performs poorly on the training and testing set. This implies that the
model has failed to learn any pattern from the dataset. Poor data quality,
improper feature selection, few training samples, an imbalanced dataset,
and a bad selection of training parameters often cause model overfitting and
underfitting. Model overfitting and underfitting can be handled by using
techniques such as data balancing, proper feature selection, data
augmentation, and cross-validation.



4.1.6 Model optimization
Optimization is adjusting training parameters (i.e., model coefficients) to
minimize errors made when mapping the inputs to outputs by the machine
learning model. Adjusting training parameters (i.e., tuning) is usually
required to build a model that performs well and yields accurate predictions
for a particular problem. During optimization, a model uses a parameterized
mapping function (e.g., a weighted sum of inputs) to learn and generalize
from training data to predict new data. The optimization algorithm usually
minimizes the function’s error and generates the optimal parameters by
selecting values that cause the trained model to provide the best
performance. The algorithm compares the results in every iteration by
changing the parameters in each step until it reaches an optimum set of
values. The selection and adjustment of parameters directly and
significantly impact how the model performs.

In implementing machine learning models, various techniques are pivotal
for optimizing algorithms. This section delves into four prevalent and
traditional optimization methods to offer a concise understanding. The
techniques explored include Exhaustive Search, Gradient Descent,
Stochastic Gradient Descent, and Evolutionary Optimization Algorithms.
Each method is detailed in the following subsections.

4.1.6.1 Exhaustive search
Exhaustive or brute-force search involves finding the most optimal
parameters by examining whether each value is a good match. An excellent
example of an exhaustive search is when someone forgets the combination
of the digits (code) for a suitcase lock and tries out all possible
combinations of digits to unlock it. The same approach is applied in model
optimization, but the number of possible options (i.e., parameters’
combinations) is typically very large. First, it generates a list of parameters



and their corresponding values. Then, it trains and evaluates a model for
each parameter combination, selecting the one with the best performance
based on a predefined metric. Examples of machine-learning algorithms
that can be optimized using exhaustive search are K-means clustering,
Fuzzy c-mean clustering, and kNN classification algorithms.

4.1.6.2 Gradient descent
Gradient refers to the slope or incline of a surface. Thus, gradient descent
means a descending slope to reach the lowest point in a particular space.
The idea of the gradient descent method is to update the model parameters
iteratively to minimize the objective function, whose parameters are
optimized during training. With every update, this method guides the model
in finding the target and gradually converges to the optimal value of the
objective function. More precisely, it first initializes model parameters
randomly with predefined values. Then, it computes the gradient of the loss
function with respect to each parameter using training data and adjusts the
parameters accordingly to converge toward the optimal values that
minimize the loss gradually. When performing parameter optimization, the
gradient descent optimization technique utilizes all data samples in a given
dataset in every iteration. Thus, performing optimization with a large
dataset in each iteration becomes computationally very expensive.
Examples of machine-learning algorithms that can be optimized using
gradient descent are logistic regression, linear regression, SVM, gradient
boosting, and AdaBoosting.

4.1.6.3 Stochastic gradient descent
In contrast to gradient descent, which uses all data samples from the dataset
in every iteration, Stochastic Gradient Descent (SGD) uses a few samples
(or a batch) that are selected randomly in each iteration. A batch refers to



the complete set of samples from a dataset utilized to compute the gradient
in every iteration. Thus, in SGD, the learning algorithm normally finds out
the gradient of the objective function for a batch in each iteration rather
than the sum of the gradients of the objective function of all the samples.
Since only a batch from the dataset is randomly selected for each iteration,
the time taken by the algorithm to reach the optimal performance is usually
significantly shorter compared to gradient descent methods. Some of the
algorithms that are optimized by using SGD include logistic regression and
SVM.

4.1.6.4 Evolutionary optimization algorithms
Evolutionary Optimization Algorithms (EOA) are population-based
methods inspired by biological principles employed in solving machine-
learning optimization problems. These algorithms draw inspiration from
natural phenomena such as natural selection, species migration, bird
swarms, human culture, and ant colonies. EOA starts by initializing a
population of potential solutions, where each solution is represented by
individuals possessing sets of parameters. They then evaluate the fitness of
each individual based on an objective function, selecting individuals based
on their fitness and generating new candidate solutions through
recombination and mutation operations. Offsprings are introduced to the
population, either replacing or supplementing existing individuals. The
process continues for multiple iterations until termination criteria are met,
allowing individuals to evolve toward better solutions efficiently. Examples
of EOA include Genetic Algorithms (GA), Ant Colony Optimization, and
Particle Swarm Optimization. It is worth noting that while EOAs can
optimize machine learning models effectively, they do not necessarily find
the optimal solutions.



4.2 Model deployment
The deployment of the machine-learning model involves putting a trained
and validated model into a working environment. The machine-learning
models can be deployed across a wide range of environments, such as web
and mobile platforms, and are often integrated with other systems through
Application Programming Interfaces (API) to facilitate accessibility for end
users. The process of deploying the model requires several different key
steps. Firstly, the model needs to be deployed into its working environment,
where it has access to the hardware resources and data to work on.
Secondly, the model is made accessible to end users’ devices. Finally, the
end users are trained to interact with the model via a simplified interface
where they can insert their inputs and receive corresponding outputs.

4.3 Model monitoring
The deployed model is continuously monitored to ensure that it performs
predictions properly. Apart from performance monitoring, it is also
important to ensure that the API and computation resources perform as
required. Additionally, the model’s performance should be routinely
assessed using tools that track metrics to automatically give alerts should
there be any degradation in its performance. Common causes of
performance degradation include:

Variance in Input Data: The data given to the model might not be
cleaned in the same way as it was for the training and testing data
which could adversely affect the performance of the model.
Changes in Data Integrity: Over time, changes in data (e.g., formats
and attribute naming) being fed to the model can affect the model’s
performance.



Data Drift: Changes in features like demographics and market shifts
can lead to data drift. This makes the data used during training become
irrelevant with respect to the current context thereby making the
model’s results less precise.
Concept Drift: End users’ perceptions of correct predictions may
change over time, making the model’s predictions less relevant.

4.4 Ethical considerations in machine
learning operations (MLOps)
Ethical considerations within MLOps entail a spectrum of principles and
practices focused on ensuring fairness, transparency, privacy,
accountability, security, and diversity in the development, deployment, and
use of AI systems. These considerations are crucial for mitigating potential
harms, preventing discrimination and bias, protecting individual rights and
privacy, and promoting trust and accountability in AI technologies. Ethical
frameworks and guidelines offer direction on navigating complex ethical
challenges and ensuring the responsible and ethical development and
deployment of AI systems. Table 4.3 summarizes common ethical
considerations in MLOps.



Table 4.3 Common ethical considerations in MLOps.

Fairness and Bias Ensure that algorithms avoid discriminating
against individuals based on protected features
such as religion, race, or gender.

Accountability
and Responsibility

Holding developers and organizations
accountable for the actions and outcomes of
deployed models, including resolving any errors
or biases that arise.

Diversity and
Inclusion

Ensure varied representation in model
development to avoid bias perpetuation and to
create inclusive solutions for all individuals.

Privacy and
Security

Implementing strong privacy and security
controls to prevent unwanted access, alteration,
or exploitation of deployed models and the data
they handle.

Explainability and
Interpretability

Creating interpretable and explainable
algorithms is crucial to upholding
accountability, nurturing trust, and uncovering
potential biases. When users comprehend how
an algorithm makes its decisions, it promotes
transparency and trust.

Human-in-the-
Loop Approaches

Implement a human-in-the-loop approach where
human judgment is involved in critical decisions
made by deployed models. Establish redress
mechanisms for individuals who perceive
algorithmic decisions have negatively impacted
them.

Legal and
Regulatory
Compliance

Ensure that algorithms comply with pertinent
legal and regulatory frameworks related to

Ethical
consideration Description



fairness and non-discrimination to prevent
potential legal and ethical conflicts.

Continuous
Evaluation and
Improvement

Emphasize continuous evaluation of algorithms
post-deployment. Regularly update models,
reevaluate fairness metrics and incorporate
improvements to address emerging challenges
and issues.

4.5 Summary
This chapter provided a comprehensive guide on developing, deploying,
and monitoring machine learning models. It began by discussing the critical
considerations in dataset splitting techniques, emphasizing the importance
of partitioning data into training and testing sets to ensure effective model
evaluation. Additionally, it covered strategies for choosing the appropriate
algorithm based on factors like the nature of the problem, dataset
characteristics, and available computing resources. After that, the chapter
discussed the model training and evaluation steps, explaining how to build
the model and emphasizing the importance of assessing model performance
on unseen data to gauge generalization capabilities accurately.
Subsequently, the chapter presented several evaluation metrics, including
R-squared, Accuracy, Silhouette score, Support, etc., used to facilitate
performance evaluation, ensuring consistency and reliability in real-world
applications. Additionally, the chapter explored the concepts of overfitting
and underfitting, along with their corresponding mitigation techniques.
Furthermore, key algorithms such as Gradient descent and EOA were
presented to provide a comprehensive understanding of model optimization.
Then, the chapter discussed model deployment and monitoring,

Ethical
consideration Description



underscoring the significance of deploying models in production
environments and continuously monitoring their performance to address
potential drift and maintain efficacy in dynamic settings. Lastly, the chapter
concluded by presenting ethical issues in MLOps, which encompasses
various principles and practices that promote fairness, transparency,
privacy, accountability, security, and inclusion in the development,
deployment, and use of AI systems.

Exercises
1. While training a machine learning model, discuss the role of k-fold cross-validation in

preventing overfitting.
2. Explain key considerations when selecting a machine learning algorithm for different

problems.
3. Identify and explain scenarios where improper data splitting could result in a biased

model.
4. Describe the primary steps involved in model training and testing in machine learning.

Highlight the significance of testing sets for model performance evaluation.
5. Define overfitting and underfitting in the context of machine learning models. Discuss

strategies to mitigate these issues in model development.
6. Examine the optimization techniques used in machine learning algorithms. Discuss how

optimization impacts model performance and efficiency.
7. Explain the importance of model evaluation in machine learning. Describe commonly

used evaluation metrics and their relevance in assessing model performance.
8. Describe the process of machine learning model deployment and monitoring. Highlight

the key factors to consider when deploying a model into production and establishing
monitoring systems.

9. Critically identify and discuss ethical considerations in machine learning operations.
10. What are the potential benefits and challenges of adopting MLOps practices within an

organization, and how can these challenges be overcome?



Further Reading
Dangeti, P. (2017). Statistics for machine learning. Packt Publishing Ltd.
Gollapudi, S. (2016). Practical machine learning. Packt Publishing Ltd.
Hall, M. (2011). Practical machine learning tools and techniques. Morgan

Kauffman.
Paleyes, Andrei, Urma, Raoul-Gabriel, & Lawrence, Neil D. (2022).

Challenges in deploying machine learning: A survey of case studies.
ACM Computing Surveys 55(6), 1–29.

Pruneski, James A., Williams, Riley J., Nwachukwu, Benedict U.,
Ramkumar, Prem N., Kiapour, Ata M., Kyle Martin, R., Karlsson, Jón, &
Pareek, Ayoosh. (2022). The development and deployment of machine
learning models. Knee Surgery, Sports Traumatology, Arthroscopy
30(12), 3917–3923.

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley &
Sons.

Singh, P. (2021). Deploy machine learning models to production. Springer.
Subasi, A. (2020). Practical Machine Learning for Data Analysis Using

Python. Academic Press.
Thompson, S. (2023). Managing machine learning projects: From design to

deployment. Simon and Schuster.
Witten, Ian H., & Frank, E. (2002). Data mining: practical machine learning

tools and techniques with Java implementations. Acm Sigmod Record
31(1), 76–77.

OceanofPDF.com

https://oceanofpdf.com/


5
Machine learning software and
hardware requirements
DOI: 10.1201/9781003486817-5
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Describe commonly used software tools and libraries in machine learning development,
including TensorFlow, PyTorch, scikit-learn, and Apache Spark.

2. Evaluate different hardware options for machine learning tasks based on performance,
cost, and scalability considerations.

3. Demonstrate proficiency in setting up and configuring machine learning environments,
including software installation, package management, and virtual environments.

4. Understand the importance of software version control and collaboration tools (e.g., Git
and GitHub) in machine learning projects.

5. Explore cloud-based machine learning platforms and services for scalable model training
and deployment.

5.1 Programming languages
It is important to acknowledge that proficiency in computer programming is
essential for developing machine learning models. Python, R, and
MATLAB are widely recognized as prominent programming languages in
this field. They offer comprehensive software tools, including frameworks,
Integrated Development Environments (IDEs), and libraries designed to
construct machine learning models. These languages boast large and active

https://dx.doi.org/10.1201/9781003486817-5


communities comprising developers, data scientists, researchers, and
enthusiasts. These communities contribute to advancing libraries, providing
assistance, and sharing knowledge and resources. They offer extensive
documentation, tutorials, forums, and online courses that facilitate learning.
Moreover, Python, R, and MATLAB are user-friendly, readable, and
versatile, which makes them accessible to both beginners and experienced
developers. This fosters a supportive and collaborative environment within
these communities. The following subsections provide in-depth discussions
of the programming languages commonly used in machine learning.

5.1.1 Python programming language
Python is a versatile, object-oriented, open-source programming language
widely used for crafting machine learning models. Its flexibility allows the
implementation of various machine learning models through a range of
Python-based software tools. Unlike Windows, Linux and Mac operating
systems come with a Python environment pre-installed by default.
Presently, Python exists in two primary versions: Python 2.x and Python
3.x, where x represents a minor version within the primary versions. Thus,
offering distinct functionalities and features allows users to choose between
versions based on specific project requirements and compatibility needs.
The latest Python version is 3.x and can be installed through a Python setup
file (available at: https://www.python.org/downloads/). The goal of
installing Python is to create an environment that supports Python code
execution. Python can also be automatically installed when installing other
software packages such as Anaconda (available at:
https://www.anaconda.com/).

https://www.python.org/downloads/
https://www.anaconda.com/


5.1.1.1 Python code editors and IDEs
Most Python tools come packaged in a single distribution platform called
Anaconda. Anaconda is an open-source platform and environment manager
with several open-source packages (i.e., libraries, IDEs, and editors), as
shown in Figure 5.1. Additional libraries to Anaconda can be installed using
Anaconda’s package managers. Code editors and IDEs that support Python
are needed to write the Python programs. A code editor is a text editor that
simplifies and accelerates code writing and editing processes. On the other
hand, an IDE is a software application used for creating, compiling, and
debugging code. The common code editors and IDEs that support the
Python programming language are summarized in Table 5.1.

Figure 5.1 Anaconda environment.



Table 5.1 Python code editors and IDEs

Jupyter
Notebook

Jupyter Notebook is a web-based open-source
application offering an intuitive and interactive
platform for data exploration, model development,
visualization, documentation, and collaboration.
Instead of composing and revising an entire program,
Jupyter Notebook enables users to iterate and write
Python code lines within cells, executing them
individually. It facilitates easy modifications by
allowing users to jump to cells, edit their code, and
rerun the program seamlessly.

JupyterLab JupyterLab presents the evolution of the Jupyter
Notebook, offering an upgraded and more versatile
interface for data exploration and computational tasks.
It retains the core functionalities of the Notebook
while introducing an enhanced user interface that
allows for improved data analysis, visualization, and
workflow organization.

PyCharm PyCharm is an IDE that allows code completion and
inspections, error highlighting and fixes, debugging,
version control, and code refactoring. The major
drawback of this software is that it is resource-
intensive.

Spyder Spyder is used for Python program development and
has autocompletion, debugging, and variable
exploration features. It has an area for writing Python
code, a console, and a place for displaying variables,
plots, and files.

Visual
Studio Code
(VS Code)

VS Code is a versatile code editor supporting
numerous programming languages like Python, C++,
PHP, and more. Its wide array of features and
extensions makes it an excellent option for ML model
development, testing, and deployment. These features

Tool Description



encompass IntelliSense for intelligent code
completion, integrated debugging tools, Jupyter
Notebooks support, and an extensive library of
extensions, streamlining Python development in
machine learning endeavors.

Sublime
Text

Sublime Text is a lightweight, cross-platform code
editor known for its simplicity, speed, and user-
friendly interface. It supports multiple programming
and markup languages and offers many robust editing
features, such as syntax highlighting, code folding,
auto-completion, multiple selections, and macros. It is
important to note that Sublime Text is not integrated
into Anaconda.

PyDev PyDev is a prominent open-source Python IDE built in
the Eclipse platform. It has various capabilities, such
as code completion, syntax highlighting, debugging
tools, and integration with major Python libraries and
frameworks.

Wing Wing is a powerful proprietary IDE with open-source
community editions. It includes advanced capabilities
such as code analysis, debugging tools, integrated
profiling, and support for various frameworks and
libraries, including Python.

Geany Geany is a code editor that is lightweight and efficient
and can be used for Python programming. It has
syntax highlighting, code folding, and project
management features.

Brackets Brackets is an open-source code editor intended
mostly for web development but also suited for Python
programming, including live preview, preprocessor
support, and task-specific extensions.

Tool Description



5.1.1.2 Python libraries
Python offers a vast selection of libraries explicitly designed for
constructing machine learning models. These libraries cover various
functionalities, including classification, regression, clustering, collaborative
filtering, dimensionality reduction, and optimization algorithms. Depending
on the Python environment, these libraries may come pre-installed or can be
readily accessed and installed using commands like conda and pip (i.e.,
Conda (conda install <library name>) or Pip (pip install <package
name>)). A notable benefit is that most of these libraries are open-source,
providing users with the flexibility to utilize and customize them at no cost.
This significantly contributes to the collaborative and innovative
environment for machine learning research and development. Table 5.2
outlines the most prevalent Python libraries.



Table 5.2 Common Python libraries

NumPy NumPy is a library employed for manipulating large,
multidimensional arrays and matrices coupled with a
suite of high-level mathematical functions tailored to
operate on these arrays and matrices.

Pandas Pandas are a powerful tool for loading, analyzing,
and refining datasets, offering robust data
manipulation and preparation functionalities.
Leveraging the foundation provided by the NumPy
library, Pandas extends its capabilities, providing a
high-level interface and specialized tools for efficient
data handling, transformation, and exploration.

Matplotlib Matplotlib is a plotting library utilized for generating
static, animated, and interactive 2D and 3D
visualizations. It is commonly employed in
conjunction with the NumPy library.

Seaborn Seaborn is a Python data visualization library
constructed atop Matplotlib. Offering a high-level
interface enables the creation of visually engaging
and informative statistical graphs, including scatter
plots, line plots, histograms, box plots, and heatmaps.
Seamlessly compatible with data frames and arrays,
Seaborn aids in visually exploring and
comprehending data.

scikit-learn scikit-learn is employed for modeling tasks such as
classification, regression, clustering, and
dimensionality reduction. It incorporates a diverse
range of machine learning algorithms, including
SVM, Random Forest, and kNN, among others, for
model development.

TensorFlow TensorFlow is an end-to-end framework with a
flexible ecosystem of tools, submodules, APIs, and

Library Description



community resources, aiding in developing and
deploying classical machine learning and neural
network–based models.

PyTorch PyTorch is a library commonly used for developing
and training neural network–based models. It is
primarily developed to accelerate the path from
prototyping to deployment.

Keras Keras offers a high-level interface for creating and
training deep learning models, enabling users to
effortlessly design intricate neural networks with
minimal coding, utilizing the capabilities of
TensorFlow.

fastai fastai is a deep learning library constructed atop
PyTorch, aiming to streamline the training of deep
learning models through user-friendly APIs and pre-
trained models.

Plotly Plotly is a library designed for crafting interactive
and dynamic visualizations, providing a high-level
interface to produce interactive plots, charts, and
dashboards for tasks such as data exploration, model
evaluation, and result presentation.

Plotnine Plotnine is a Python library that applies graphics
grammar to generate statistical graphs. Inspired by
the ggplot2 package in R, it adopts a similar syntax
and philosophy for visualization construction. With
Plotnine, users can generate a diverse array of plots,
including scatter plots, line plots, bar plots,
histograms, and more, by mapping data attributes to
aesthetic properties like color, shape, and size.

SciPy SciPy library provides advanced scientific computing
capabilities like optimization, integration, and linear

Library Description



algebra. These capabilities are essential for tasks such
as signal processing and numerical analysis.

OpenCV OpenCV is a computer vision library focused on
image processing, feature detection, and object
recognition.

Natural
Language
Toolkit
(NLTK)

NLTK is a Python library dedicated to natural
language processing tasks, providing extensive tools
and resources for text processing, linguistic analysis,
and machine learning.

Gensim Gensim is a library focused on topic modeling and
natural language processing (NLP), making it
especially adept for text analysis tasks like document
clustering and topic discovery.

Explain Like
I’m 5 (ELI5)

ELI5 is a library for explaining machine learning
models in simple terms, assisting in interpreting
model predictions and gaining insights into their
thinking.

5.1.2 R programming language
R is a no-cost, open-source programming language and environment
devised for statistical computing and model creation. It boasts numerous
capabilities, including robust techniques for data cleaning, transformation,
integration, and preprocessing. Additionally, it offers various statistical
tools, such as the chi-square test, t-test, z-test, and ANOVA, alongside
machine learning tools like regression, classification, and clustering
modeling. The R environment can be installed on Windows, Linux, and
Mac operating systems via a standalone software package called R Studio.
For example, in Windows operating systems, R Studio (Figure 5.2) can be

Library Description



installed using the setup file downloadable from https://cloud.r-project.org/
or through the Anaconda distribution platform.

Figure 5.2 R studio environment.

5.1.2.1 R programming code editors and IDEs
Several popular IDEs and code editors support the R programming
language, offering diverse options for users. Notable ones include Jupyter
Notebook, Spyder, and VS Code, highlighted in Table 5.1. Each platform
provides a robust environment for R programming, catering to different
preferences and requirements, thereby accommodating a wide range of
users and their varying workflow needs. Other IDEs and code editors that
support the R programming language are presented in Table 5.3.

https://cloud.r-project.org/


Table 5.3 IDEs and code editors for R

RStudio RStudio furnishes extensive tools and functionalities to
aid R development, data analysis, and statistical
modeling.

IntelliJ
IDEA with
R Plugin

IntelliJ IDEA is a Java IDE that supports R
programming through its R plugin. It provides features
such as code completion, debugging tools, and version
control integration, offering a robust and reliable
environment for R programming.

Eclipse
with
StatET

StatET plugin extends Eclipse’s capabilities to support
R programming. The plugin enhances Eclipse by
incorporating syntax highlighting, code completion,
and an integrated R console.

R Tools for
Visual
Studio

R Tools for Visual Studio is an extension of the
Microsoft Visual Studio IDE enabling R programming.
It provides various features, including IntelliSense,
debugging, charting, remote execution, and SQL
integration.

Atom Atom provides a set of features, including syntax
highlighting, code completion, debugging tools, an
interactive console, data visualization capabilities, and
project management functionalities.

5.1.2.2 R programming libraries
Several R libraries play crucial roles in building machine learning models,
as detailed in Table 5.4. These libraries include different functionalities to
address distinct aspects of machine learning tasks.

Tool Description



Table 5.4 R programming libraries

DataExplorer DataExplorer is a library used for EDA, feature
engineering, and data reporting.

Ggplot2 Ggplot2 is a data visualization library renowned
for producing visually appealing and informative
plots, simplifying the exploration and
communication of complex data patterns.

Kernel-Based
Machine Learning
Lab (kernLab)

kernLab is utilized for machine learning
modeling tasks, encompassing classification,
regression, clustering, and dimensionality
reduction. It includes a diverse range of machine
learning algorithms like SVM, Random Forest,
and kNN.

MICE Package Multivariate Imputation by Chained Equations
(MICE) Package is used for imputing missing
values in a dataset.

Rpart Recursive partitioning (rpart) is a library used
for classification, regression, and tree-based
models.

Caret caret offers a consolidated interface for training
and assessing an extensive array of classification
and regression models. The library streamlines
the tasks of model selection, hyperparameter
tuning, and performance evaluation.

5.1.3 MATLAB
MATLAB® is a high-level programming language employed to express
data or features in matrix and array form. It furnishes interactive tools,
facilitating various machine learning tasks, including feature extraction,
feature selection, model training, and hyperparameter tuning. As depicted in

Library Description



Figure 5.3, MATLAB offers diverse capabilities for managing machine
learning tasks. It is worth noting that MATLAB is proprietary software
compatible with Windows, Linux, and Mac operating systems. Further
information on MATLAB installation can be found at
https://www.mathworks.com/help/install/install-products.html.

Figure 5.3 MATLAB working environment.

5.1.3.1 MATLAB code editors and IDEs
MATLAB does not have a wide variety of code editors and IDEs, unlike
Python and R. MATLAB Desktop is the primary and most widely used IDE
for MATLAB programming. It has an interactive editor, command window,
debugger, and various toolboxes for numerical computation, visualization,
and programming. MATLAB Online and MATLAB Mobile are the web-
and mobile-based versions of MATLAB Desktop, respectively, offering the
same functionalities as the desktop version.

5.1.3.2 MATLAB libraries
Several MATLAB programming libraries are used for building machine
learning models as summarized in Table 5.5.

https://www.mathworks.com/help/install/install-products.html


Table 5.5 MATLAB programming libraries

MATLAB Image
Processing
Toolbox

The MATLAB Image Processing Toolbox offers
comprehensive functions and tools for
processing, analyzing, and visualizing images.

MATLAB Signal
Processing
Toolbox

The MATLAB Signal Processing Toolbox
comprises functions tailored for signal analysis,
filtering, feature extraction operations, and
spectrum analysis.

MATLAB
Statistics and
Machine Learning
Toolbox

The MATLAB Statistics and Machine Learning
Toolbox provide functions and algorithms for
statistical analysis, machine learning, and
predictive modeling. It provides functionalities
for classification, regression, clustering, and
dimensionality reduction.

MATLAB
Optimization
Toolbox

MATLAB Optimization Toolbox contains a set
of algorithms and tools for handling
optimization issues such as linear programming,
nonlinear optimization, and restricted
optimization.

MATLAB Curve
Fitting Toolbox

MATLAB Curve Fitting Toolbox includes tools
for fitting curves, interpolating data, and
smoothing data. It provides a variety of curve-
fitting methods as well as tools for analyzing and
displaying fitted curves.

5.1.4 Other programming languages
Python, R, and MATLAB are popular choices for machine learning, as
described in the previous sections. However, other languages like Java and
C++ can also be used as discussed in the following.

Library Description



5.1.4.1 Java programming
Java is one of the predominant programming languages in the Information
and Communication Technology (ICT) domain, renowned for its platform
agnosticism, readability, and vast ecosystem. Machine learning in Java
remains significant for various reasons, including its wealth of libraries and
frameworks, seamless integration with existing Java codebases, robust
performance and scalability, applicability in enterprise environments,
emphasis on security, versatility across diverse use cases, compatibility
across multiple platforms, and strong community support.

5.1.5 Java programming code editors and IDEs
Java programming code editors and IDEs for machine learning
development provide advanced syntax highlighting, code completion, and
debugging capabilities specifically designed for Java machine learning
libraries. These tools streamline the machine learning workflow by
incorporating version control systems like Git and granting convenient
access to libraries and frameworks for tasks such as data preprocessing,
model training, and evaluation. Moreover, they boast a diverse ecosystem of
plugins and extensions for additional customization, enhancing productivity
in machine learning projects. These tools are outlined in Table 5.6.



Table 5.6 IDEs and code editor for Java

IntelliJ
IDEA

IntelliJ IDEA is an IDE tailored for Java development,
facilitating the creation of robust code across various
platforms such as Windows, macOS, and Linux. It
offers two editions: a no-cost community version and a
paid ultimate edition.

Eclipse Eclipse provides both a desktop version and a cloud
version known as Eclipse Che. This IDE empowers
developers to manage multiple workspaces
concurrently, enhancing project organization and
boosting productivity and efficiency.

NetBeans NetBeans is a cross-platform, open-source IDE
designed for Java development that is free of charge.
Packed with features like syntax highlighting, code
completion, and integrated debugging tools, the IDE
facilitates rapid coding.

BlueJ BlueJ, a free IDE commonly utilized for educational
aims, is particularly beginner-friendly. This well-
organized platform offers an interactive environment
complemented by graphical representations and a
distinctive coloring scheme.

JDeveloper JDeveloper, a free IDE, is particularly suited for
streamlining Java application development across the
System Development Life Cycles (SDLC). This tool
stands out for its features, including advanced code
editing functionalities, seamless integration with
version control systems like Git, automated deployment
tools, and strong support for Java technologies like
Enterprise JavaBeans (EJB) and Java Persistence API
(JPA).

JCreator JCreator is a versatile IDE suitable for developers of all
levels (i.e., deals for beginners and experienced

Tool Description



professionals), with a lightweight design and robust
features. It offers an intuitive interface, advanced code
editing, integrated debugging, project management
tools, version control integration, GUI design, profiling,
code analysis, and support for plugins.

Codenvy Codenvy is a cloud-based software that allows
developers to work and collaborate without installing
local software on their machines. This makes it ideal for
remote software development teams that need a unified
platform that their global workforce can use to work
individually and collaborate.

DrJava DrJava is a lightweight, user-friendly IDE primarily
designed to offer simplicity and ease of use for
developers. It is particularly preferred in educational
settings due to its beginner-friendly interface and
features tailored for learning Java programming.

JGrasp JGrasp, a straightforward Java IDE, is particularly
commendable for educational purposes. It boasts syntax
highlighting, code navigation, and UML visualization
capabilities, all packaged within a user-friendly
interface that facilitates the automatic creation of
software visualizations. Notably, it specializes in
generating Control Structure Diagrams (CSDs),
technical diagrams crucial for illustrating control flow
in applications. This functionality aids debugging and
workbench testing phases by enhancing developers’
code readability.

5.1.6 Java ML libraries
Java has specialized machine learning libraries offering various functions,
from data preparation to model evaluation. By leveraging these libraries,

Tool Description



developers can better utilize Java’s robust ecosystem to build and deploy
machine learning solutions. Some of the libraries are described in Table 5.7.



Table 5.7 Java ML libraries

TensorFlow
Serving

TensorFlow Serving, an open-source library, is tailored
for deploying machine learning models focusing on
achieving low latency performance. It can operate
locally or in cloud environments, accommodating a
wide array of models, ranging from deep convolutional
networks to linear models. This tool empowers
developers to efficiently deploy machine learning
models at scale, eliminating the need for manual
infrastructure management.

Apache
Spark
MLlib

Apache Spark MLlib, a specialized library is crafted to
construct machine learning pipelines within Apache
Spark clusters. Equipped with high-level APIs, it
empowers developers to swiftly establish resilient
machine learning pipelines by leveraging distributed
data training algorithms and other distributed
processing tasks.

DL4J Deeplearning4j (DL4J), a robust deep learning library,
is constructed atop the Java Virtual Machine (JVM),
aiding developers in crafting production-ready
applications. With provisions for GPU acceleration,
distributed computing, and diverse neural network
architectures like convolutional nets, recurrent neural
nets, and LSTM networks, DL4J ensures
comprehensive support. Additionally, it offers a GUI-
based user interface for hyperparameter tuning,
simplifying the optimization of model performance.

Apache
OpenNLP

The Apache OpenNLP library specializes in natural
language processing (NLP) tasks within the Java
environment. With functionalities like tokenization,
part-of-speech tagging, sentence segmentation, and
named entity recognition, OpenNLP offers a modular

Library Description



architecture and pre-trained models, streamlining the
integration of NLP features into Java applications.

Apache
Mahout

Apache Mahout is a Java library tailored to deliver
scalable machine learning algorithms, covering
clustering, classification, and recommendation tasks.
Engineered to handle extensive datasets efficiently,
Mahout excels in performing machine learning
operations on big data.

Smile The Statistical Machine Intelligence and Learning
Engine (Smile) is a Java library featuring various
algorithms for classification, regression, clustering,
association rule mining, and dimensionality reduction.
With a focus on simplicity and performance, Smile
offers an intuitive API suitable for novice and
experienced developers.

TensorFlow
Java API

TensorFlow, a renowned deep learning library, offers a
Java API that enables developers to integrate
TensorFlow capabilities seamlessly into Java
applications. This facilitates the development and
training of neural networks within Java environments.

DL4J Deep Learning for Java (DL4J) is a distributed deep
learning library designed for Java, Scala, and Clojure.
It harmonizes with Hadoop and Spark, accommodating
diverse neural network architectures.

Encog Encog emerges as a sophisticated machine learning
framework tailored for Java, encompassing neural
networks, genetic algorithms, support vector machines,
and various other ML techniques.

JSAT Java Statistical Analysis Tool (JSAT) is a Java-based
library housing ML algorithm, prioritizing user-
friendliness and mirroring the design of the Weka
library. JSAT offers an extensive array of algorithms

Library Description



for classification, regression, clustering, and
recommendation, suitable for researchers, students,
and enthusiasts keen on experimenting with ML
algorithms in Java.

MALLET MALLET, which stands for Machine Learning for
Language Toolkit, is a Java-based toolkit designed for
natural language processing (NLP), encompassing
tasks such as document classification, clustering, topic
modeling, and information extraction. Renowned for
its flexibility, user-friendly interface, and
comprehensive documentation, MALLET is accessible
to novices and seasoned NLP practitioners.

5.1.6.1 C++ programming
C++ is a versatile and powerful programming language widely utilized in
machine learning to develop core algorithms and implement
computationally intensive tasks. With its high speed, efficiency, reliability,
and low-level control, C++ caters to diverse domains beyond machine
learning, including game development, embedded systems, and software
engineering. This ability is attributed to its support for procedural and
object-oriented programming paradigms and low-level memory
manipulation features.

5.1.7 C++ programming code editors and IDEs
C++ code editors and IDEs are tools that offer a variety of features tailored
for C++ development. These tools support code editing, debugging
capability, and integration with C++ libraries essential for ML-based project
management. The C++ code editors and IDEs are described in Table 5.8.

Library Description



Table 5.8 C++ programming code editors and IDEs

Code::Blocks Code::Blocks is a free, cross-platform IDE tailored
for C/C++ development, offering a range of features
like compiling, debugging, profiling, and code
analysis. Renowned for its performance and user-
friendly interface, it supports full breakpoints and
integrates seamlessly with community and team-
developed plugins.

CodeLite CodeLite is also an open-source IDE that comes with
the features of a class browser, static code analysis,
project management, code refactoring, profiling,
debugging, completion, and compiling. The IDE
offers a rapid application development (RAD) tool
that helps one build widget-based applications.
Windows, Linux, Mac, and FreeBSD support it.

CLion CLion is a cross-platform IDE built for C++
development, providing features such as code
analysis, CMake support for streamlined project
management and build automation, and intelligent
code assistance for project modeling. Notably, it
offers local and remote (via SSH) support, enabling
developers to code locally and compile on remote
servers.

5.1.8 C++ programming libraries
C++ offers numerous libraries tailored for machine learning and AI
applications, equipped with pre-implemented algorithms, functions, and
tools to construct intelligent systems. Table 5.9 outlines some of the
prominent libraries for machine learning in C++.

Tool Description



Table 5.9 C++ programming libraries

Dlib Dlib, an open-source, cross-platform toolkit, is primarily
employed for machine learning and computer vision
applications. Renowned for its high performance and
efficiency, it provides many tools and algorithms for
facial recognition, object detection, image processing,
and machine learning model training, making it ideal for
real-time applications.

mlpack mlpack is a versatile machine learning library designed
to provide state-of-the-art algorithms for clustering,
regression, and dimensionality reduction, along with data
preprocessing and visualization tools. Utilizing the
Armadillo linear algebra library, mlpack emphasizes
scalability, speed, and user-friendliness, making machine
learning model development accessible to novice users
through a simple and consistent API.

SHARK SHARK is a collection of open-source C++ machine
learning libraries that offer linear and nonlinear
optimization, kernel-based learning algorithms, neural
networks, and various machine learning methods. It
empowers machine learning experts to easily tackle a
broad spectrum of tasks, making it suitable for real-world
applications and research endeavors. SHARK’s
versatility extends to supervised and unsupervised
learning, evolutionary algorithms, and other machine
learning techniques, providing a robust toolkit for diverse
machine learning challenges.

Caffe Caffe, developed by the Berkeley Vision and Learning
Center (BVLC), is a high-performance deep learning
framework designed for the efficient training and
deployment of neural networks, particularly in computer
vision. Its modular architecture facilitates
experimentation, and its CPU and GPU acceleration

Library Description



support allows it to handle large-scale machine learning
tasks efficiently. Caffe is rich in pre-trained models and
visualization tools, making it popular among deep
learning researchers and practitioners.

CNTK The Microsoft Cognitive Toolkit (CNTK) is an open-
source platform for distributed deep learning, known for
its high accuracy in training deep learning models. It
features a flexible and powerful API for C++.

Armadillo Armadillo is a robust C++ linear algebra library with
MATLAB-like syntax and functionality, simplifying
matrix, linear algebra, and numerical tasks. Its intuitive
interface enhances development productivity, while
seamless integration with other C++ libraries makes it
versatile for scientific computing, machine learning, and
data analysis. Known for its speed, ease of use, and
compatibility, Armadillo is favored in academic research
and industrial applications requiring fast and reliable
numerical computations.

DyNet DyNet is a C++ library with Python bindings optimized
for dynamic computation graphs and automatic
differentiation. It excels in neural network operations and
training, particularly in natural language processing tasks
where it is frequently applied.

Shogun Shogun offers various machine learning algorithms and
tools for classification, regression, clustering, and
dimensionality reduction tasks. With bindings for
Python, Java, and MATLAB, users can access its
functionalities from various programming environments
despite its core implementation being in C++.

FANN Fast Artificial Neural Network (FANN) is an open-source
neural network library written in C language (it also
supports C++). The library implements multilayer
artificial neural networks supporting fully and sparsely

Library Description



connected networks. It is easy to use, versatile, well-
documented, and fast. Critical features of FANN include
backpropagation learning, evolving topology learning,
cross-platform, and support for floating and fixed point
numbers.

FAISS FAISS offers efficient algorithms for similarity search
and clustering of dense vectors. With Python bindings, it
integrates well with Python-based machine learning
workflows. Its core functions are in C++, ensuring high
efficiency for tasks like large-scale nearest-neighbor
search. FAISS supports CPU and GPU acceleration,
making it versatile for applications like image and text
retrieval, recommendation systems, and NLP.

OpenNN OpenNN supports machine learning and advanced
analytics across various domains like energy, marketing,
health, and digital economy. With algorithms for
classification, regression, and prediction, OpenNN offers
robust AI solutions. Its multiprocessor programming
ensures high performance for the swift execution of
complex tasks.

5.1.9 Criteria for choosing programming language
for machine learning
When choosing a programming language for machine learning projects, key
factors include library and framework support, robust and extensive
community support, ease of learning and use, flexibility, scalability and
efficiency, integration with other tools and software, and industry adoption.
Languages like Python are favored for their simplicity and extensive
ecosystem of machine learning libraries, while languages like C++ and Java
excel in performance-intensive tasks. Python’s interoperability and
lightweight deployment options make it popular for integrating machine

Library Description



learning models into production systems. Ultimately, the choice depends on
project requirements and development team preferences, with careful
consideration of these factors ensuring the most suitable language is
selected for machine learning projects. These criteria are discussed in the
subsequent sections.

5.1.9.1 Library and framework support
Libraries are compilations of pre-written code modules that developers can
utilize to save time and avoid reinventing the wheel. In AI and machine
learning, where specific functionalities can significantly speed up the
development process, libraries play a crucial role by offering ready-to-use
algorithms and data structures. A programming language equipped with a
diverse and robust set of libraries is often favored for AI and machine
learning development. On the other hand, a framework is a pre-established,
reusable toolkit comprising tools, libraries, and conventions. It serves as an
abstraction layer, streamlining the development and maintenance of
software applications by providing common functionalities, design patterns,
and components. Robust library and framework support in a programming
language can simplify and accelerate the execution of machine learning
projects.

5.1.9.2 Robust and extensive community support
The presence of robust and extensive community support is crucial for
navigating the challenges encountered while developing machine learning
applications. Additionally, a large, active, and knowledgeable community
associated with a particular programming language plays a pivotal role in
selecting the language for machine learning projects. Such a community
actively engages in discussions, forums, and online platforms, readily
sharing expertise and knowledge. Moreover, it facilitates in-person



connections through meetups and events, fostering experience exchanges
among the members. A vibrant community benefits developers of all levels,
enabling continuous learning and exposure to best practices. In the context
of machine learning projects, programming language community support
ensures resilience and sustainability by offering the members reliable
assistance and shared knowledge. The active participation and extensive
support from the community ultimately contribute to the success of
machine learning endeavors.

5.1.9.3 Ease of learning and use
The ease of learning and use depends on factors such as user experience,
familiarization with the programming language, or its direct impact on
solving the problem. A programming language with high ease of learning
has clear and concise documentation, a simple and consistent syntax, and
features that make common tasks straightforward. Additionally, the
availability of learning resources, community support, and a supportive
development environment contribute to the overall ease of use. A
programming language designed for ease of learning and use can accelerate
the development process and reduce the likelihood of errors, making it
more accessible and appealing to both beginners and experienced
developers.

5.1.9.4 Flexibility, scalability, and efficiency
Choosing the right programming language for machine learning projects
involves assessing flexibility, scalability, and efficiency to meet diverse
needs and challenges throughout the development life cycle. A flexible
language allows developers to write adaptable code that addresses various
requirements by supporting multiple programming paradigms, offering
diverse libraries and frameworks, and enabling concise expression of ideas.



Scalability is crucial for accommodating growth in users, data, and features,
requiring vertical and horizontal scaling capabilities. Support for parallel
processing, efficient memory management, and distributed computing
enhances a language’s scalability. Additionally, efficiency is essential for
executing tasks quickly and utilizing system resources effectively.
Considerations such as runtime performance, memory management, and
optimization tools are crucial for resource-intensive machine learning
applications. Choosing a programming language that balances flexibility,
scalability, and efficiency ensures robustness and adaptability in machine
learning development.

5.1.9.5 Integration with other tools and software
Effective integration with other tools and software is crucial in selecting a
programming language for machine learning projects. Seamless integration
streamlines workflows, leveraging existing tools and infrastructure
efficiently. Key considerations include robust APIs and libraries,
compatibility with existing tools and frameworks, support for standard data
exchange formats, efficient interprocess communication mechanisms,
database integration, deployment, and cloud services. By considering these
factors, developers can choose a programming language that facilitates
seamless integration, enhances productivity, and maximizes efficiency in
machine learning projects.

5.1.9.6 Industry adoption
Industry adoption is a pivotal factor influencing the choice of programming
languages for ML projects. The widespread adoption of a language across
various sectors signifies its relevance and suitability for real-world
applications. One of the primary advantages of selecting a language with
high industry adoption is the market demand it generates. Such languages



are often in high demand, increasing job opportunities and career prospects
for proficient developers. Moreover, industry adoption ensures the
availability of a skilled talent pool. Companies prefer languages with a large
community of proficient developers, making recruiting and onboarding
talent with relevant expertise easier. Additionally, languages with extensive
industry adoption typically enjoy stable ecosystems with robust support
from developers, communities, and organizations. This stability ensures
continuous development, updates, and maintenance support, reducing the
risk of project disruptions.

5.2 No-code tools
No-code tools come with pre-packed implementations for common machine
learning algorithms for classification, clustering, regression, dimensionality
reduction, etc. They are used to quickly build machine learning models
without requiring prior programming knowledge and skills. However, using
programming languages to develop machine learning models is a better
option than no-code tools because the former provides control over the
created model. The common no-code tools are WEKA, Orange, and
Teachable Machine. Table 5.10 summarizes common no-code tools for
building machine learning models.



Table 5.10 Common no-code tools

WEKA WEKA, short for Waikato Environment for Knowledge
Analysis, is a free and open-source tool for machine
learning. It offers a range of algorithms for tasks like
data preprocessing, classification, regression, clustering,
association rules, and visualization. Further information
on installing WEKA can be found at
https://waikato.github.io/weka-
wiki/downloading_weka/.

Orange Orange is a free open-source toolkit for data
visualization and machine learning featuring
comprehensive libraries. It is conveniently included in
the Anaconda distribution.

Teachable
Machine

Teachable Machine is a free web-based machine
learning no-code tool for easily prototyping models.

5.3 Experiment tracking tools
Experiment tracking within machine learning encompasses the
comprehensive management of all experiment components, from
hyperparameters and performance metrics to predictions, ensuring the
creation of an efficient and well-documented model. Table 5.11 presents a
compilation of the commonly utilized tools designed explicitly for
experiment tracking in machine learning. These tools offer diverse
functionalities that aid in organizing, monitoring, and evaluating various
experiment elements, contributing significantly to the streamlined
development and optimization of machine learning models.

Tool Description

https://waikato.github.io/weka-wiki/downloading_weka/


Table 5.11 Experiment tracking tools

Dashboard by
weight and
biases

Weight and Biases Dashboard allows for the real-
time monitoring of training data. It seamlessly
integrates with popular machine learning frameworks
like PyTorch, TensorFlow, and Keras.

Tensorboard Tensorboard enables the visualization of statistics of
a neural network, such as the training parameters
(e.g., loss, accuracy, and weights), images, and even
the graph to debug and optimize the model.

Neptune.ai Neptune.ai is a centralized metadata repository for
machine learning operations workflow, enabling
tracking, visualization, and comparison of thousands
of machine learning models in one place. It fosters
seamless collaboration within the machine learning
community.

MLflow Machine Learning Flow (MLflow) is an open-source
platform for managing the end-to-end machine
learning life cycle. It has components for recording
and querying experiments, packaging code into
reproducible runs, managing and deploying machine
learning models, supporting integration with popular
machine learning frameworks and libraries, and
storing and sharing machine learning models.

Comet ML Comet Machine Learning (Comet ML) is a machine
learning experimentation and collaboration platform.
It can track, compare, and analyze experiments, log
hyperparameters, metrics, and experiment results,
and facilitate collaboration among team members.
Comet ML also supports integration with popular
machine learning frameworks and libraries.

Metaflow Metaflow is a machine learning infrastructure tool
developed by Netflix for building, deploying, and

Tool name Description



managing real-life data science projects by providing
a high-level abstraction. It supports versioning,
monitoring, and scaling machine learning pipelines.
It enables users to define machine learning
workflows as a series of steps and execute them
locally or in the cloud.

ClearML Clear Machine Learning (ClearML), previously
called Trains, is an open-source platform designed to
oversee machine learning experiments and models. It
offers features for logging hyperparameters, metrics,
and artifacts and tracking, visualizing, and
optimizing machine learning workflows.
Additionally, ClearML supports model deployment
and monitoring, and seamless integration with
popular machine learning frameworks and libraries.

5.4 Pre-trained models repositories
A pre-trained model is a solution developed for a specific problem, which
can be directly applied or fine-tuned to address similar tasks. Leveraging
pre-trained models can reduce computing costs, reduce carbon footprint,
and save time on training models from scratch. These machine learning
models are readily available from established repositories, some of which
are detailed in Table 5.12.

Tool name Description



Table 5.12 Pre-trained models’ repositories

TensorFlow
Hub

TensorFlow Hub contains pre-trained models that
are available for deployment and fine-tuning. It
facilitates the reuse of pre-trained models with a
minimum amount of code added. This repository
can be accessed at https://www.tensorflow.org/hub.

Pytorch Hub PyTorch Hub provides a platform for publishing
pre-trained models to a GitHub repository,
including model definitions and pre-trained
weights. This repository can be accessed at
https://pytorch.org/hub/.

Hugging Face
Transformers

The Hugging Face Transformers platform offers
APIs that simplify downloading and retraining
state-of-the-art pre-trained models. This repository
can be accessed at
https://huggingface.co/docs/transformers/index.

OpenAI OpenAI provides powerful machine learning
models created by OpenAI that are trained on
massive quantities of data to reach outstanding
language interpretation and generation skills. The
pre-trained models’ documentation can be accessed
at https://platform.openai.com/docs/models.

Paperswithcode Paperswithcode is a repository of machine learning
research papers with links to the corresponding
code and pre-trained models. It is helpful for
researching cutting-edge models and locating
suitable resources for specific requirements. It can
be accessed at https://paperswithcode.com/.

OpenAI Model
Zoo

OpenAI Model Zoo is a repository that contains a
collection of high-performing pre-trained OpenAI
models, including the GPT-3 family of big

Repository
name Description

https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://huggingface.co/docs/transformers/index
https://platform.openai.com/docs/models
https://paperswithcode.com/


language models. It is well-known for its cutting-
edge models. It can be accessed at
https://platform.openai.com/docs/models.

5.5 Datasets and model tracking tools
Datasets and model tracking tools are crucial in monitoring alterations
made to datasets and gauging their influence on the performance of
machine learning models. These tools are integral for tracking changes
within the data and training and refining machine learning models. Table
5.13 provides a compilation of common datasets and model-tracking tools.
Each tool within this compilation is pivotal in cataloging, managing, and
analyzing datasets and monitoring the evolution of machine learning
models, thereby aiding researchers and practitioners in effectively
managing the intricate process of data modification and model refinement
within the machine learning workflow.

Repository
name Description

https://platform.openai.com/docs/models


Table 5.13 Datasets and model tracking tools

Artifacts by
Weights and
Biases

Artifacts by Weights and Biases are used to version
the datasets, track different machine learning
pipelines, and reproduce previous datasets.

Data Version
Control
(DVC)

DVC, an open-source version control system, is
tailored to monitor and manage models and datasets
within the machine learning workflow. It offers a
structured framework for tracking changes in models
and datasets, bolstering reproducibility and fostering
collaboration among teams engaged in machine
learning projects.

CML Continuous Machine Learning (CML) is a GitHub
Actions feature that allows one to automate machine
learning activities, such as tracking datasets and
model versions.

DataRobot
MLOps

DataRobot MLOps platform offers the functionality
for managing and tracking datasets, apart from the
end-to-end machine learning life cycle.

5.6 AutoML hyperparameter optimization
tools
Automated Machine Learning (AutoML) tools simplify the process of
optimizing machine learning models by automatically adjusting their
hyperparameters. Table 5.14 presents a compilation of the most commonly
used tools for this purpose, providing a comprehensive overview of the
techniques employed in AutoML hyperparameter optimization.

Tool Description



Table 5.14 AutoML hyperparameter optimization tools

Optuna Optuna is a freely available open-source framework
developed explicitly for automatic hyperparameter
optimization. Its user-friendly define-by-run API sets
it apart, making the process more intuitive and
adaptable to varying optimization needs.

Tune Tune is a versatile Python library designed for
experiment execution and automatic hyperparameter
tuning, suitable for small- and large-scale machine
learning projects. It facilitates efficient
experimentation and parameter tuning across various
task complexities.

HyperOpt HyperOpt is a Python library for hyperparameter
tuning that automatically chooses the best parameters
for a given model. It is capable of optimizing large-
scale models with hundreds of hyperparameters.

TPOT TPOT, which stands for Tree-based Pipeline
Optimization Tool, is a Python-based automated
machine learning tool. It utilizes genetic programming
to optimize machine learning pipelines automatically.

Google
Cloud
AutoML

Google Cloud AutoML is a tool developed by Google
that automatically tunes hyperparameters in complex
machine learning models.

AWS Sage
Maker

AWS Sage Maker provides automatic optimization
service to machine learning algorithms built using
huge datasets in a distributed environment.

Microsoft
(MS) Azure
AutoML

MS Azure AutoML is a Microsoft-developed open-
source toolkit for AutoML. It automates
hyperparameter tuning, feature engineering, and
model compression tasks.

Tool Description



Scikit-
Optimize

Scikit-Optimize is an easy-to-use Python built-in
library integrated with scikit-learn and provides basic
hyperparameter optimization (HPO) algorithms such
as grid search and random search.

Auto-
PyTorch

Auto-PyTorch is a PyTorch models automation library
focused on hyperparameter optimization (HPO),
neural architecture search (NAS), and model pruning.

Auto-Keras Auto-Keras is a specialized library integrated with
Keras that focuses on automating neural architecture
search (NAS) and hyperparameter optimization
(HPO) specifically for Keras models.

IBM Watson
AutoAI

IBM Watson AutoAI is a component of IBM Watson
Studio that automates the training and optimization of
ML models, including hyperparameter tuning.

5.7 Machine learning life cycle tools
Machine learning life cycle tools track every model development,
deployment, and performance monitoring stage. They are used from the
initial conception of the algorithm to the optimization, which is required to
keep the model accurate and effective. The common machine learning life
cycle tools are summarized in Table 5.15.

Tool Description



Table 5.15 Machine learning life cycle tools

Kubeflow Kubeflow is a free and open-source machine learning
platform that facilitates the development, orchestration,
optimization, deployment, and execution of scalable
and portable models. It provides a framework for
organizing projects, harnessing the power of cloud
computing, and empowering developers to construct
optimal models.

Seldom Seldom is an open-source machine learning
deployment platform that streamlines the machine
learning workflow with features such as audit trails,
advanced experiments, continuous integration, scaling,
and model explanations, enabling faster and more
effective problem-solving.

Mlflow Mlflow is an open-source platform to manage the
machine learning life cycle, including implementation,
experimentation, packaging, deployment, and
performance monitoring.

Google
Cloud AI
Platform

Google Cloud AI Platform provides a range of features
for managing the machine learning life cycle. This
includes a dashboard, data labeling, workflow
orchestration, and model management.

5.8 User interface development tools
The user interface is crucial in interactive machine learning as users
actively train the algorithm iteratively. Table 5.16 compiles commonly used
tools for developing interactive and effective interfaces.

Tool Description



Table 5.16 User interface development tools

Streamlit Streamlit supports the development of web applications
for machine learning problems. It is an open-source
library’s API written entirely in Python. Therefore, it
simplifies web application development without utilizing
other web technology languages.

Django Django is a free and open-source framework for
constructing web apps (i.e., user interfaces) based on
Python programming. It is suitable for building secure,
maintainable, and multi-page applications.

Flask Flask is a Python-based microframework that offers basic
features for developing web applications. It is suitable for
single-page applications only.

5.9 Explainable AI tools
Explainable AI (XAI) tools provide detailed insights into the functioning of
machine learning models through descriptive explanations. Table 5.17 is a
convenient reference, showcasing these tools for easy understanding and
practical application.

Tool Description



Table 5.17 Common XAI tools

SHAP SHAP, which stands for SHapley Additive
exPlanations, is a framework that offers
explainability for various algorithms, including
linear regression, logistic regression, and tree-based
models. It provides insights into the contributions of
individual features toward the predictions made by
these models.

LIME LIME, which stands for Local Interpretable Model-
agnostic Explanations, is a methodology that
provides explainability for a wide range of
algorithms, including random forest, k-Nearest
Neighbor (kNN), and support vector machines
(SVMs). It enables the interpretation of individual
predictions made by these models, allowing for a
better understanding of their decision-making
process.

AI
Explainability
360

AI Explainability 360 is an open-source toolkit
developed by IBM. It offers a comprehensive
collection of techniques and models specifically
designed for interpreting and explaining machine
learning models. This toolkit provides a valuable
resource for enhancing the transparency and
interpretability of machine learning models.

Anchors Anchors is a tool with simple, high-precision rules
that locally characterize a model’s behavior. These
rules are interpretable and aid in comprehending the
model’s decisions.

Tool Descriptions



5.10 Version control systems
Version control systems (VCS) are software tools that track and manage file
changes, enabling developers to record modifications in the source code.
VCS maintains a repository of all changes, allowing developers to revert to
earlier versions if needed. This facilitates error fixing and comparison of
file versions. Moreover, VCS enables collaborative work by allowing
multiple developers to edit files independently and share changes when
ready. Table 5.18 provides examples of common VCS tools.



Table 5.18 Version control systems

Git Git is an open-source distributed VCS designed to
support projects of different sizes and support
multiple branches of change that can be independent
of each other.

Concurrent
Versions
System
(CVS)

CVS is a free, open-source version control system
that efficiently manages concurrent software
development branches. It enables collaboration,
tracks changes, and maintains version history.

Subversion
(SVN)

SVN, an open-source version control system, offers a
wide selection of Integrated Development
Environment (IDE) plugins. These plugins enhance
usability and integration with various IDEs, making
version control seamless within the development
environment. They facilitate smoother collaboration
and code management among team members.

Mercurial Mercurial is a distributed VCS with features similar
to those of Git.

Data Version
Control
(DVC)

DVC, primarily designed for version management of
machine learning projects, specializes in handling
machine learning datasets and models. It efficiently
handles large files, such as datasets, while effectively
tracking changes.

5.11 Machine learning hardware
requirements
This chapter introduces the hardware requirements for machine learning
tasks. It also introduces using cloud computing services as an alternative

Version
control
system Description



method if local computer resources do not meet the requirements of the
machine learning process.

5.12 Operating systems requirements
The most commonly used operating systems in contemporary machine
learning tasks include GNU/Linux-based OSs, Microsoft Windows, and
Apple MacOS. However, modern machine learning algorithms primarily
execute their computational tasks within the core software governing the
entire computer system. Consequently, there is no inherent advantage in
using a particular OS over others for the machine learning process.
Moreover, considering additional factors such as the ease of supporting
emerging technologies and the extensive support of free and open-source
libraries, the Linux operating system holds more advantages than Microsoft
Windows and MacOS.

5.13 Processor and memory requirements
Machine learning tasks often necessitate substantial computational
resources due to the large datasets and complex algorithms involved.
Selecting the most suitable machine for such tasks can be challenging, as
several factors must be considered, including processing speed and graphics
processing capabilities. The following subsections outline the minimum
requirements for the Central Processing Unit (CPU), Graphics Processing
Unit (GPU), Random Access Memory (RAM), and Storage to ensure
optimal performance in machine learning workloads.

5.13.1 CPU
Multi-core processing, which involves distributing computationally
intensive tasks across multiple CPU cores, is commonly employed in



machine learning. Utilizing multiple cores can significantly reduce
execution time, scaling performance gains with the number of available
cores. A minimum recommendation for simple machine learning tasks
would be a dual-core 2.2 GHz processor.

5.13.2 GPU
A GPU, or Graphics Processing Unit, is a specialized microprocessing chip
or circuit for graphics-related tasks. GPUs are widely used in machine
learning due to their ability to efficiently perform parallel computations,
surpassing the capabilities of CPUs in this regard. They feature a large
number of cores and high memory bandwidth, making them well-suited for
parallel processing of large datasets. Several types of GPUs are available in
the market, including Tesla NVIDIA, NVIDIA GeForce RTX, NVIDIA
Quadro RTX, and AMD Radeon RX.

5.13.3 TPU
The Tensor Processing Unit (TPU) is a custom-designed application-
specific integrated circuit (ASIC) developed by Google. It is specifically
designed to accelerate machine learning tasks, particularly for training and
inference of large AI models. TPUs are optimized for various applications,
including chatbots, media content generation, recommendation engines, and
more. They offer scalability and cost-efficiency across various AI
workloads and are compatible with popular frameworks such as
TensorFlow, PyTorch, and Just Another X (JAX). TPUs significantly
enhance the performance of neural network-–based machine learning tasks,
making them a valuable asset in the AI ecosystem.



5.13.4 RAM
Random Access Memory (RAM) temporarily stores data that the
computer’s processor needs to access quickly. When it comes to machine
learning tasks, the amount of RAM in a computer is a crucial consideration.
A large RAM capacity is vital when dealing with large datasets and
performing complex computations. It enables efficient data processing and
manipulation during the machine learning workflow, leading to improved
performance and faster execution times.

5.13.5 Storage
A computer with significant storage capacity is necessary for machine
learning tasks involving large datasets, such as images and videos. It is
recommended to have both Solid State Drive (SSD) and Hard Disk Drive
(HDD) with reasonable sizes. However, if speed, price, and efficiency are
key factors, a hybrid drive that combines SSD and HDD is the optimal
choice. A hybrid drive offers the advantages of both technologies by
providing the speed of an SSD and the storage capacity of an HDD. This
provides a good balance between performance and storage for machine
learning tasks.

5.14 Cloud computing services for
machine learning
Cloud computing is an excellent alternative for running machine learning
models, especially when access to expensive and high-maintenance
specialized computers or servers is limited. Cloud computing services
provide a cost-effective solution for executing complex and memory-
intensive machine learning models. These services involve delivering IT



resources, such as servers, storage, databases, networking, software,
analytics, and intelligence, over the internet. They typically operate on a
pay-as-you-go pricing model. Table 5.19 describes some of the most
common cloud computing services available.



Table 5.19 Common cloud computing services for ML

Google
colab

Google Colab is a Jupyter Notebook environment
developed by Google that grants users free access to
GPUs and TPUs, empowering them to build machine
learning models at no cost.

Amazon
Web
Services
(AWS)

AWS, provided by Amazon, is a comprehensive and
continuously evolving cloud computing platform that
offers Machine Learning as a Service (MLaaS). It
enables users to build, run, and conveniently deploy
machine learning models.

Microsoft
(MS) Azure

Microsoft Azure is a proprietary cloud computing
service encompassing many functionalities for
training, deploying, accelerating, and managing the
entire life cycle of machine learning projects. It
provides a comprehensive platform for various aspects
of machine learning, allowing users to leverage its
capabilities seamlessly.

IBM Watson IBM Watson is a cloud computing service that offers a
full range of tools and services for building, training,
and deploying machine learning models.

BigML BigML is a cloud-based machine learning platform
prioritizing ease of use and automation. It offers a
range of tools and features that simplify the
development and deployment of machine learning
models. With its user-friendly interface and automated
processes, BigML aims to make machine learning
accessible to a wide range of users.

Cloud
computing

services Description



5.15 Summary
This chapter explores the interplay between essential hardware and software
tools necessary for developing machine learning models. On the software
side, it delves into the integration of programming languages with
comprehensive ecosystems, user-friendly frameworks, and libraries. No-
code tools are highlighted for democratizing machine learning access. The
chapter also covers experiment tracking tools and pre-trained model
repositories that enhance management and reproducibility. Additionally, it
discusses tools for managing machine learning life cycles, AutoML, user
interfaces, explainable AI, and version control. It underscores the critical
hardware components required, such as multi-core processors, high-
performance CPUs, GPUs, TPUs for efficient training, and ample storage
and RAM for managing complex datasets. The chapter also highlights the
scalability and flexibility offered by leading cloud computing services.
Collectively, these components form a robust ecosystem that ensures
collaboration, transparency, and traceability throughout the machine
learning development process.



Exercises
1. Consider having a CPU, RAM, GPU, and TPU to do machine learning tasks:

a. What are their minimum requirements?
b. How does each accelerate the training process?
c. What are the key considerations when selecting them, considering both hardware

and budget constraints?
2. What factors should be considered when selecting a cloud provider for machine learning

tasks? Compare the performance of cloud-based machine learning services with on-
premise solutions. What are the trade-offs between the two approaches in terms of
scalability and cost?

3. What is the most used programming language for machine learning tasks, and why?
Compare and contrast the use of programming languages in machine learning. What are
the strengths and weaknesses of each language, and in what contexts are they commonly
employed?

4. Explain the role of version control systems (e.g., Git) in managing machine learning
codebases. How can version control contribute to collaboration and reproducibility in
machine learning projects?

5. Briefly describe three popular machine learning code editors, IDEs, frameworks, and
libraries, highlighting their key features and use cases.

6. How do no-code editors contribute to broadening access to machine learning, and what
advantages and limitations do they have compared to traditional coding?

7. How do pre-trained model repositories accelerate machine learning development, and
what challenges may arise when utilizing pre-trained models?

8. How do datasets and model tracking tools contribute to effective management throughout
the machine learning development life cycle, and what metadata is crucial for tracking
datasets and models?

9. Explain the concept of hyperparameter optimization in machine learning and how
AutoML tools automate the process of finding optimal hyperparameters.

10. Explain the concept of explainable AI and how explainable AI tools contribute to
interpreting and understanding the decisions made by machine learning models.



Further Reading
AI For People. (n.d.). Tools for explainability and transparency.

https://www.aiforpeople.org/tools-for-explainability-and-transparency/
Anand, A. (2021, January). 6 Explainable AI (XAI) frameworks for

transparency in AI. Dev. https://dev.to/amananandrai/6-explainable-ai-
xai-frameworks-for-transparency-in-ai-3koj

Bulat, R. (2023, February 24). Machine learning programming – Languages
and frameworks for 2023. Iglu. https://iglu.net/machine-learning-
programming/

Dilhara, M., Ketkar, A., & Dig, D. (2021). Understanding software-2.0: A
study of machine learning library usage and evolution. ACM
Transactions on Software Engineering and Methodology (TOSEM),
30(4), 1–42.

Flexa, C., Gomes, W., & Viademonte, S. (2019, July). An exploratory study
on machine learning frameworks. In Anais do XVIII Workshop em
Desempenho de Sistemas Computacionais e de Comunicação. SBC.

Li, H., & Bezemer, C. P. (2022). Studying popular open source machine
learning libraries and their cross-ecosystem bindings. arXiv preprint
arXiv:2201.07201.

Loeliger, J., & McCullough, M. (2012). Version control with git: Powerful
tools and techniques for collaborative software development. O’Reilly
Media, Inc.

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á.,
Heredia, I., … & Hluchý, L. (2019). Machine learning and deep learning
frameworks and libraries for large-scale data mining: A survey. Artificial
Intelligence Review, 52, 77–124.

https://www.aiforpeople.org/tools-for-explainability-and-transparency/
https://dev.to/amananandrai/6-explainable-ai-xai-frameworks-for-transparency-in-ai-3koj
https://iglu.net/machine-learning-programming/


Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á.,
Heredia, I., … & Hluchý, L. (2019). Machine learning and deep learning
frameworks and libraries for large-scale data mining: a survey. Artificial
Intelligence Review, 52, 77–124.

Onose, E. (2020, December 13). Explainability and auditability in ML:
Definitions, techniques, and tools. Neptune.
https://neptune.ai/blog/explainability-auditability-ml-definitions-
techniques-tools

Wang, Z., Liu, K., Li, J., Zhu, Y., & Zhang, Y. (2019). Various frameworks
and libraries of machine learning and deep learning: A survey. Archives
of Computational Methods in Engineering, 31, 1–24.

Zhu, M., McKenna, F., & Scott, M. H. (2018). OpenSeesPy: Python library
for the OpenSees finite element framework. SoftwareX, 7, 6–11.

OceanofPDF.com

https://neptune.ai/blog/explainability-auditability-ml-definitions-techniques-tools
https://oceanofpdf.com/


6
Responsible AI and explainable AI
DOI: 10.1201/9781003486817-6
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Explain the concepts of responsible AI and explainable AI.
2. Understand the importance of transparency, fairness, and accountability in AI.
3. Analyze and identify biases and assess fairness considerations within AI systems.
4. Examine the cultural implications of AI technologies and their impact on various sectors.
5. Familiarize with existing and emerging regulations and standards related to AI ethics.

6.1 Responsible AI
AI offers a broad spectrum of opportunities across a variety of application
domains. For instance, AI technologies support medical experts in disease
diagnosis and prognosis, treatment planning, and disease prevention.
Furthermore, AI has significantly improved agriculture, environmental
conservation, manufacturing, and transportation sectors. However, the
impressive advancements in AI technology may have negative outcomes,
which, if not addressed, could lead to potentially disruptive consequences,
threats, and risks to humanity. Consequently, the development and
deployment of AI systems require special attention to ensure that they are in
the interest of the social good. As a result, it becomes imperative to adopt
responsible approaches to AI solutions from the early stages of their

https://dx.doi.org/10.1201/9781003486817-6


inception. Responsible AI refers to the ethical and accountable
development, deployment, and use of AI systems. It entails various
principles and practices aimed at ensuring AI technologies are designed and
used in ways that benefit individuals and society while minimizing potential
risks and negative impacts. It is, therefore, important to consider the
principles of responsible AI to ensure that the development and application
of AI solutions are inclusive, transparent, equitable, unbiased, and ethical.
The fundamental principles of responsible AI are summarized in Table 6.1.

Table 6.1 Responsible AI principles

Fairness AI systems should treat everyone fairly regardless
of geographical differences, ethnicities, and gender.
Ensuring fairness and avoiding biases require well-
representative datasets for AI model training.

Inclusiveness AI systems should empower everyone and engage
people to provide better results.

Reliability &
Safety

AI systems should perform reliably and safely such
that they can cause no harm.

Transparency AI systems should be understandable so that their
decision-making is explainable and provide
visibility of their elements.

Privacy &
Security

AI systems should be secure and respect the
privacy of individuals’ data and supporting
systems.

Accountability AI systems might operate autonomously, but
humans should be accountable for supervising such
systems.

Principle Description



6.2 Explainable AI
Explainable AI (XAI) refers to artificial intelligence systems that provide
clear, understandable, and interpretable explanations of their decisions and
actions to human users. XAI aims to make the workings of AI models
transparent, allowing users to trust and understand the reasoning behind AI
outputs. XAI is essential in building trust and confidence in the deployed
models. It is also one of the key requirements for implementing responsible
AI.

If AI lacks explainability in certain domains, like entertainment services,
the potential harm may not be as catastrophic compared to other areas.
Explainable AI is crucial in domains with high-risk applications such as
face recognition (in law enforcement), autonomous vehicles, or disease
diagnosis and prognosis. It is important to note that using explainable
machine learning models provides more debugging efficiency and
contributes to achieving responsible AI. The difference between traditional
AI and explainable AI is summarized in Figure 6.1.

Figure 6.1 Traditional AI and explainable AI.



6.3 Privacy concerns in machine learning
Privacy in machine learning has become increasingly critical as machine
learning algorithms are widely deployed across various applications.
Privacy concerns revolve around the collection, storage, and utilization of
sensitive information in ways that can impact the privacy of individuals.
The privacy issues in machine learning can manifest in different ways,
presenting challenges that extend across various stages of the machine
learning life cycle. For example, the unintentional inclusion of personally
identifiable information (PII) during data collection can threaten
individuals’ privacy. This risk is heightened in the event of data breaches,
where unauthorized access to training datasets might lead to the disclosure
of sensitive information, thereby endangering privacy on a larger scale. To
protect user privacy, techniques such as deanonymization and data
aggregation can be employed to separate user data. Additionally,
eliminating user identifiers and unique data and ensuring secure data
storage are critical measures for preventing potential privacy risks.

It is worth noting that machine learning models are vulnerable to
implication breaches. Implication breaches in machine learning happen
when information used by or derived from machine learning models is
misused to reveal sensitive details about individuals. These breaches take
advantage of data patterns learned by the models, potentially exposing
personal information even if it was anonymized. For example, an attacker
could exploit subtle correlations within the model to re-identify individuals
or infer private attributes not explicitly present in the data. These breaches
are particularly alarming in sectors such as healthcare, finance, or any area
involving sensitive personal information. Consequences may include
identity theft, discrimination, and privacy violations. To mitigate the risks
of implication breaches in machine learning, it is essential to implement



strong data protection and privacy measures, such as differential privacy,
secure data storage, and thorough model evaluation. Moreover, the opacity
of certain machine-learning models complicates the explanation of their
decision-making processes. This lack of explainability poses significant
privacy concerns, especially in contexts where transparency is crucial, such
as medicine or legal or financial decision-making. Deep neural networks,
for example, are vulnerable to various implication breaches because they
retain information from their training data. These vulnerabilities can be
exploited through techniques like white-box membership inference. The
“white-box” refers to having access to detailed information about the
model’s architecture, parameters, and training process. By exploiting this
access, an attacker can infer membership of a particular data sample in the
training dataset based on the model’s responses or outputs.

Furthermore, it is important to note that creating datasets with individual
information from different sources could result in multidisciplinary privacy
risks. This risk emerges when data from diverse sources are aggregated,
leading to the possibility of revealing sensitive information that was not
considered private when isolated. For example, consider a scenario where
medical records are combined with social media data and purchasing
history. Individually, each dataset might not disclose sensitive information.
However, combined, the dataset could reveal personal details about an
individual’s health conditions, lifestyle choices, and financial status.

As consumers commit their data to machine learning systems, gaining
explicit and informed consent becomes increasingly essential. Furthermore,
individuals should have a choice over how their data is used, and companies
must set clear rules for data collection, utilization, and storage. As a result,
regulatory compliance with privacy standards such as the General Data
Protection Regulation (GDPR) or the Health Insurance Portability and



Accountability Act (HIPAA) is more than simply a legal necessity. It is an
essential component of protecting individuals’ private rights.

Therefore, privacy-preserving techniques are employed to protect user
privacy within machine learning applications. Consider the following
scenario: the data owner wants to use the data to train a machine learning
model but does not want to lose control over it. And, the model’s owner
refuses to expose its parameters to anyone, including the owner of the data
used to train it. Additionally, both the model and data owners have a shared
interest. This issue can be handled well by privacy-preserving machine
learning strategies to safeguard the interests of each side. Several privacy-
preserving machine learning strategies have been developed to address
possible privacy risks. These include differential privacy—introducing
noise to data to protect individual privacy; homomorphic encryption—
enabling computations on encrypted data; and federated learning—a
decentralized approach where multiple devices collaboratively train a
model without sharing raw data. However, each technique has strengths and
weaknesses, making privacy-preserving machine learning an active area of
research.

6.4 Ethical implications of machine
learning
Human beings exhibit various cognitive biases, such as recency and
confirmation bias, which are reflected in our behaviors and, consequently,
in the data we generate. Since data forms the foundation of machine
learning algorithms, it is crucial to design experiments and algorithms with
these biases in mind. Machine learning has the potential to amplify and
scale human biases at an unprecedented rate, leading to significant ethical
concerns. These issues can arise from misguided, unexplainable, or



untraceable evidence, potentially resulting in unfair and discriminatory
outcomes. Addressing these biases is essential to ensure the ethical and fair
deployment of machine learning technologies. Table 6.2 summarizes the
general ethical issues of machine learning.



Table 6.2 Ethical implications of machine learning

Bias and
Discrimination

Machine learning models may unintentionally
perpetuate bias and discrimination contained in the
training data. If the training data contains biased or
discriminating tendencies, the model may learn
and repeat such biases, resulting in biased
conclusions or treatments. For example, if the data
for resume screening is biased toward specific
groups, a resulting machine learning system may
mistakenly discriminate against certain
demographic groups.

Privacy and
Data Protection

Machine learning frequently relies on vast
volumes of sensitive personal data for training and
prediction in crucial domains such as law
enforcement and healthcare. The collection,
storage, and use of such data might raise privacy
and protection concerns. Individuals’ personal
information must thus be maintained securely and
used in accordance with existing privacy
regulations. Furthermore, the prospect of re-
identification and data breaches pose significant
challenges to maintaining data privacy. This may
potentially lead to targeted assaults.

Lack of
Transparency
and
Explainability

Some machine learning models, particularly deep
learning models, can be exceedingly complicated
and difficult to comprehend. However, the lack of
transparency raises concerns about the models’
capacity to explain and defend their findings. As a
result, the black-box nature of some machine
learning algorithms may be problematic in certain
industries, such as healthcare or finance, where
openness and accountability are crucial.

Concern Description



Unintended
Consequences

Unexpected or unintended consequences may arise
from machine learning models. These outcomes
may be caused by data biases, external influences,
or the model’s interactions with complex systems.
For example, the machine learning algorithm’s
decision-making process in autonomous cars may
result in unexpected accidents or moral quandaries
when presented with moral choices.

Job
Displacement
and Economic
Impact

Machine learning–driven automation may lead to
job losses in certain industries. While the transition
may create new job possibilities, it may also cause
economic disruption and inequality. For example,
in customer service, generative AI is used to create
chatbots that can answer client inquiries and
resolve issues. Consequently, this leads to job
losses for human customer service representatives.

Adversarial
Attacks and
Security

Machine learning models are vulnerable to
adversarial attacks, in which hostile actors
intentionally affect or confuse the model by
introducing minor disruptions to the input data.
Such assaults have serious ramifications,
particularly in critical applications like
autonomous cars, disease diagnostics, and
cybersecurity.

6.5 Accountability and trust in AI
Accountability and trust in AI systems are essential for their ethical and
responsible deployment. Therefore, it is crucial to develop methods to trace
AI decision-making by creating frameworks that enable the understanding
and tracking of how AI systems reach their conclusions or actions. This
involves establishing explainable AI techniques that ensure AI algorithms

Concern Description



and models are transparent and interpretable. Furthermore, model
interpretability, causal reasoning, and attention processes provide insights
into the AI’s decision-making process, allowing users to understand and
confirm the logic behind AI-generated outcomes. Error detection systems
are required to regularly examine AI outputs for biases, inaccuracies, and
unexpected effects. These techniques include frequent audits, validation
processes, and feedback loops to improve the accuracy, dependability, and
fairness of artificial intelligence systems.

Building trust between AI systems and people requires openness and
clear communication, which includes making AI operations and functions
accessible and apparent to users, and disclosing the system’s capabilities,
limits, and the data on which it operates. It also includes reporting the
methods employed, the data sources, and any relevant biases or
uncertainties. Furthermore, good communication includes providing
consumers with comprehensible information regarding AI functions and
activities. It features user-friendly interfaces, explanations of AI-generated
judgments, and easy ways for users to request clarification or voice
concerns. Moreover, developing trust requires establishing an open and
responsive culture where user input and concerns are noticed and handled.
Managing unforeseen outcomes in AI systems necessitates a proactive
strategy. As a result, companies must anticipate any adverse effects or
biases in AI decision-making and should have mechanisms in place to
detect and mitigate them. This includes ongoing monitoring, impact
assessments, and adopting methods to reduce negative repercussions. In
addition, setting clear criteria for accountability and responsibility when
unintended consequences arise ensures that necessary remedial steps are
performed to avoid or mitigate any negative impacts.



6.6 Global case studies on AI governance
and regulation
AI governance and regulation include creating AI rules, ethical frameworks,
and legal standards that regulate the development, deployment, and use of
AI technology and solutions. The goal is to guarantee that AI systems
perform ethically, openly, and in accordance with human norms while
mitigating possible risks and social repercussions. AI governance includes
developing AI Acts, rules, and ethical guidelines, establishing AI safety
standards, encouraging accountability and transparency in AI decision-
making, and addressing concerns about bias, privacy, and the social
repercussions of AI. Regulatory activities are focused on adopting rules and
regulations that control AI technology, including data privacy, AI ethics,
liability, safety, and verifying compliance with established standards in
order to promote responsible AI creation and usage. The following
subsections present some case studies of projects in AI governance and
regulation throughout the world.

6.6.1 Formulation of AI strategies and guidelines
in Africa
The formulation of AI strategies and guidelines in some African countries
involves developing comprehensive plans and policies to harness AI
technologies for economic growth and social development and address
regional challenges. For example, Rwanda’s National AI Policy
incorporates ethical considerations to seize economic development
opportunities and manage AI-related risks. Other African countries either
finalizing or already releasing their AI strategy include Algeria, Egypt,
Tunisia, Ghana, Benin, Mauritius, and Ethiopia. At the continental level, the



African Union (AU) commenced consultation meetings with stakeholders
in early 2024 to draft the Continental AI Strategy for Africa. This strategy
aims to outline how AI can be leveraged to advance social and economic
development in Africa while establishing necessary legal and regulatory
safeguards to protect users and societies.

6.6.2 European Union AI Act
The European Union (EU) has proposed an AI Act with the goal of
addressing ethical and social concerns about AI by creating a
comprehensive regulatory framework for high-risk applications. The Act
defines four types of high-risk AI, including those that affect safety, justice,
democracy, or fundamental rights, such as facial recognition systems in
public places, AI-powered recruiting tools, and algorithms that influence
social media content. Such applications will face greater control due to their
potential for abuse or prejudice. The EU AI Act promotes openness
throughout the AI development and deployment life cycle, requiring
developers to provide information about data sources, algorithms employed,
and potential hazards, allowing users to make informed decisions when
engaging with AI systems. This quest for openness is intended to fight the
“black box” dilemma, in which AI judgments remain opaque and
unaccountable. In addition, the Act requires developers and users to follow
values such as human dignity, non-discrimination, and justice. This value-
driven approach aims to guarantee that AI benefits humanity and does not
aggravate current imbalances. The Act’s emphasis on human-centric AI and
openness establishes a precedent for future global policies, which may
influence the course of AI research worldwide.



6.6.3 Global partnership on AI
The Global Partnership on AI (GPAI) is an international initiative launched
in 2020 to bring together governments, business leaders, academics, and
civil society to support responsible AI development worldwide. GPAI
focuses on collaborative efforts through working groups focused on themes
such as responsible AI, data governance, and ethics in order to foster
international cooperation, develop best practices, and create frameworks to
ensure AI advancements are consistent with ethical principles, human
rights, and societal values. GPAI aims to foster dialogue and information
exchange, striving toward a future where AI technologies benefit society,
uphold ethical standards, and promote transparency.

6.6.4 China AI ethics guidelines
China introduced AI ethics standards in 2019, including the “Beijing AI
Principles” by the Beijing Academy of Artificial Intelligence (BAAI) and
the “AI Ethics Guidelines for Trustworthy AI” by the Ministry of Industry
and Information Technology (MIIT). The Beijing AI Principles emphasize
values such as justice, transparency, and safety, advocating for AI
advancements aligned with societal norms, privacy protection, and legal
compliance. Concurrently, the MIIT standards emphasize the necessity of
trustworthy AI innovation by prioritizing human autonomy, justice,
responsibility, and security in AI applications. Both recommendations
highlight the commitment of the country to supporting responsible AI
research and ethical standards in its fast-evolving AI ecosystem,
highlighting concepts critical to the responsible use of AI technology.



6.7 Human-centric artificial intelligence
The desire to emphasize the importance of human-centricity stems from the
fact that AI algorithms have moved away from human control and fail to fit
consumers’ ideals. In order to ensure that AI effectively fulfills its intended
purpose and avoids inadvertent harm to end users or possible harm to others
in the future, humans must be included in the loop. While many people see
AI as a revolutionary tool for human advancement, the potential
implications of the gap between AI and humans can be severe, affecting
individuals and the community. A human-centric approach in developing AI
systems prioritizes designing technologies that cater to human needs,
preferences, and capabilities. It entails using user feedback to improve AI
functionality and correspond with human tastes and requirements. This
approach prioritizes ethical concerns, including fairness and transparency in
AI algorithms, to ensure the responsible and ethical use of AI technology.
However, the emphasis on fostering human-centric AI, particularly during
the design phase of AI systems, may lead to overlooking the likelihood that
dangers to human values may develop at various points during the AI life
cycle. Other phases of the AI systems life cycle, such as creation,
assessment, and operation, must be closely monitored to guarantee
conformity with human values. For example, research reveals that different
biases exist and may be identified at various phases of the AI system’s
lifespan. Notably, certain biases may be related to the obtained data rather
than the AI algorithm’s design.

6.8 Responsible AI best practices
Developing and implementing ethical AI best practices is critical as AI
technologies continue to affect various facets of our lives. These best



practices promote transparency, justice, accountability, and privacy in AI
development and deployment. Table 6.3 outlines a useful set of responsible
AI best practices that can be used to reduce biases, increase transparency,
and maintain ethical standards throughout the AI life cycle. By adopting
these best practices, stakeholders can better navigate the ethical challenges
associated with AI, leading to more trustworthy and equitable outcomes.



Table 6.3 Responsible AI best practices

1 Use Diverse
and
Representative
Data

Ensure that the training data is varied and
reflects the population it intends to serve.
Biases in data can lead to biased models.
Thus, steps should be taken to rectify
underrepresentation and guarantee inclusion.

2 Human
Involvement in
Algorithms
Design

Since algorithms are designed by people, they
can unintentionally perpetuate and even
aggravate biases in the data used to train
them. Humans can also give a deep
knowledge of the social, cultural, and
historical context of the data. This
understanding is critical for identifying
potential biases and creating algorithms that
are sensitive to these nuances. In addition,
create a broad and heterogeneous algorithm
development team. By including team
members from different disciplines, cultures,
gender groups, and experiences, the team can
better identify potential biases, address a
wider range of ethical concerns, and develop
more robust and inclusive AI systems.

3 Ensure
Transparency
and
Explainability

Uphold transparency in the machine learning
model’s decision-making process. Users who
understand how decisions are produced may
better evaluate and counter any biases. As a
result, the highest level of explainability in the
produced models is achieved.

4 Employ Bias
Assessment and
Mitigation
Tools

Utilize tools that assess and measure biases in
the training data and model outputs. These
tools can provide insights into potential
sources of bias and guide corrective actions.
In addition, bias mitigation techniques should

S/N Best practice Description



be employed during model training.
Techniques such as re-sampling, re-weighting,
and adversarial training can help reduce
biases in machine-learning algorithms.

5 Regular
Algorithms
Audit

Regular and thorough assessments conducted
by operators are essential to identify and
rectify potential algorithm biases, ensuring
ongoing fairness and equity in their outcomes.
An example of biased outcomes can be
evident in hiring processes that consistently
favor candidates from certain socioeconomic
backgrounds over others leading to
perpetuating inequality in employment
opportunities. In this case, users can discern
the presence of bias without knowing the
inner workings of the algorithm’s decision-
making process.

6 Legal and
Regulatory
Compliance

Establish clear ethical guidelines for
algorithm design and implementation and
adhere to such guidelines. Human input is
essential in defining what is considered fair
and unbiased in different contexts. This
involves considering ethical implications and
societal norms. Besides, stay informed about
legal frameworks related to discrimination,
privacy, and fairness, and integrate
compliance measures into the development
process.

7 Encourage User
Feedback and
Input

Users may have unique perspectives and
experiences that can help identify biases or
unintended consequences in algorithms.
Actively incorporating user feedback can lead
to iterative improvements.

S/N Best practice Description



6.9 AI impact assessment case studies
Unfair or discrimination caused by AI may be addressed through AI impact
assessment and ethics by design. On the one hand, the overall purpose of
impact assessment is to understand prospective and anticipated issues
within a given area. The goal is to use this information to design mitigation
solutions. Some significant examples of AI impact assessment include the
European Commission’s High-Level Expert Group on Artificial
Intelligence’s evaluation list for trustworthy AI (AI HLEG 2020) and the
ECP Platform AI impact assessment. On the other hand, ethics by design
aims to include ethical principles in designing and developing AI and
associated technologies, emphasizing that these issues should not be
considered an afterthought. Ethics by design involves considering ethical
concepts as requirements the AI system must meet. The Ethics By Design
and Ethics of Use Approaches for Artificial Intelligence guidance drafted by
the European Commission in 2021 suggests a five-layer model that shows
what needs to be incorporated at different levels of AI development. Other
existing frameworks proposed to measure Responsible AI include the
FACETS Responsible AI Framework designed by the RAIL in KNUST
Ghana, CITADEL in Burkina Faso, and the AfriAI (previously known as
AI4D Lab) Research Lab at the University of Dodoma, Tanzania. The
framework includes a series of questions to compute the FACETS score. F,
A, C, E, T, and S stands for Fairness, Accountability, Confidentiality,
Ethics, Transparency, and Safety measures, respectively. The framework
computes the scores for four pipeline sections: Envision, Data, Model, and
Deployment. The framework can be accessed online at:
https://facets.netlify.app/facets.

https://facets.netlify.app/facets


6.10 Artificial intelligence sovereignty
Imagine a world where nations, communities, and even individuals have
control over the AI systems that influence their lives. This is the essence of
AI sovereignty, which is the ability to shape, develop, and utilize AI to align
with individual values, cultural norms, and strategic goals. At its core, AI
sovereignty encapsulates the idea that nations should retain control over
their own AI capabilities, policies, and data governance frameworks,
safeguarding their autonomy in the face of the rapidly evolving AI
landscape. This sovereignty extends beyond mere technological expertise to
encompass the ethical, legal, and strategic dimensions of AI deployment.
The race for AI dominance has become a focal point of geopolitical
competition in today’s interconnected World. Nations are investing heavily
in AI research, development, and deployment, recognizing its
transformative potential across various sectors, from healthcare to defense.
However, as AI infiltrates critical infrastructure and decision-making
processes, concerns about dependency on foreign AI technologies and
vulnerabilities to data breaches or algorithmic biases have intensified.
Consequently, AI sovereignty has emerged as a counterbalance to these
risks, advocating for national strategies prioritizing self-reliance and
resilience and protecting core values and interests.

To effectively address the complexities of AI sovereignty, policymakers
must navigate a delicate balance between fostering innovation and
safeguarding national interests. This entails developing robust regulatory
frameworks that promote responsible AI development, ensure data privacy
and security, and mitigate the risks of algorithmic manipulation or
proliferation of autonomous weapons. Moreover, international cooperation
and dialogue are essential to harmonize standards, norms, and practices
governing AI, fostering trust, transparency, and accountability in its use



globally. Ultimately, the pursuit of AI sovereignty is not merely about
asserting technological supremacy but also about upholding fundamental
principles of sovereignty, democracy, and human rights in the age of AI.
Some of the AI sovereignty aspects are described in Table 6.4.

Table 6.4 AI sovereignty aspects

Data Control Ensuring that citizens and organizations have
control over their data, including who collects it
and how it is used to train AI models. This protects
privacy, prevents discrimination, and fosters
responsible AI development.

Technological
Independence

Reducing reliance on foreign-developed AI tools
and fostering domestic capabilities. This
strengthens national security, economic
competitiveness, and cultural autonomy.

Ethical
Alignment

Shaping AI in line with local values and ethical
principles. This could involve ensuring fairness,
inclusivity, and alignment with human rights
standards.

Algorithmic
Transparency

Demystifying AI decision-making processes to
understand how algorithms impact individuals and
society. This builds trust, enables accountability,
and allows corrective actions if biases are detected.

6.11 Summary
This chapter started by setting the base on what it means by responsible and
explainable AI. It introduced the foundation of responsible AI principles,
emphasizing fairness, transparency, and ethical considerations throughout
the AI life cycle. Moving forward to explainable AI, the chapter
underscored the importance of interpretability in AI systems, enabling users

Aspect Description



to comprehend and trust the technology. Privacy concerns in machine
learning were discussed, offering strategies for safeguarding individual
privacy amid the evolving data landscape. The chapter extended the
discussion on the ethical implications of machine learning, and highlighted
some existing frameworks for assessing ethical compliance. Besides, the
issues around accountability and trust in AI were explored in the context of
establishing responsible AI practices. The chapter further delved into the
regulatory dimension with insights into AI governance and regulation.
Global perspectives were enriched by case studies across the world,
providing a contextual understanding of diverse approaches to responsible
AI deployment. Last but not least, the chapter discussed the importance of
human-centric AI design in aligning AI systems with user needs and
experiences. Finally, the chapter presented the compilation of responsible
AI best practices and AI sovereignty, offering actionable guidelines for
practitioners and organizations committed to fostering responsible, ethical,
and sustainable AI.

Exercises
1. Describe the principles of Responsible AI.
2. Discuss legal and ethical frameworks that can help address issues around Responsible AI.
3. Discuss how developers can ensure that AI models are transparent and explainable.
4. Describe the privacy concerns related to machine learning.
5. Describe any five ethical implications of machine learning.
6. Discuss the ethical considerations associated with using AI in decision-making processes.
7. Give a short description of accountability and trust in AI.
8. How can biases be introduced in AI systems, and what are the potential consequences?
9. Analyze the privacy implications of AI technologies, especially in relation to data

collection, storage, and usage.
10. What steps can you take to ensure the accountability of the decisions and actions made by

the algorithms you develop, especially in critical domains such as healthcare and finance?



Further Reading
Ala-Pietilä, P., Bonnet, Y., Bergmann, U., Bielikova, M., Bonefeld-Dahl, C.,

Bauer, W., … & Van Wynsberghe, A. (2020). The assessment list for
trustworthy artificial intelligence (ALTAI). European Commission.

Amariles, D. R., & Baquero, P. M. (2023). Promises and limits of law for a
human-centric artificial intelligence. Computer Law & Security Review,
48, 105795.

Clarke, R. (2019). Principles and business processes for responsible AI.
Computer Law & Security Review, 35(4), 410–422.

Defense Advanced Research Projects Agency (DARPA). (2022).
Explainable artificial intelligence (XAI). Retrieved July 7, 2022, from
https://www.darpa.mil/program/explainable-artificial-intelligence

Dignum, V. (2023). Responsible artificial intelligence: Recommendations
and lessons learned. In Responsible AI in Africa. Challenges and
Opportunities (pp. 195–214). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-08215-3_9

ECP. (2019). Artificial intelligence impact assessment. ECP platform for the
information society. The Hague. Retrieved December 13, 2023, from
https://ecp.nl/wp-content/uploads/2019/01/Artificial-Intelligence-
ImpactAssessment-English.pdf

European Commission. (2021). Ethics by design and ethics of use
approaches for artificial intelligence. Retrieved December 13, 2023, from
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-
2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-
for-artificial-intelligence_he_en.pdf

Ghallab, M. (2019). Responsible AI: Requirements and challenges. AI
Perspectives, 1(1), 1–7.

https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-031-08215-3_9
https://ecp.nl/
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf


IBM. (2022). Explainable AI. Retrieved July 7, 2022, from
https://www.ibm.com/watson/explainable-ai

Mikalef, P., Conboy, K., Lundström, J. E., & Popovič, A. (2022). Thinking
responsibly about responsible AI and ‘the dark side’ of AI. European
Journal of Information Systems, 31(3), 257–268.
https://doi.org/10.1080/0960085X.2022.2026621

Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., &
Floridi, L. (2020). The ethics of AI in health care: A mapping review.
Social Science & Medicine, 260, 113172.
https://doi.org/10.1016/j.socscimed.2020.113172

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive
privacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In 2019 IEEE
symposium on security and privacy (SP) (pp. 739–753). IEEE.

Shafi, A. (2021, June 16). 5 explainable machine learning models you
should understand. Towardsdatascience.
https://towardsdatascience.com/explainable-ai-9a9af94931ff

Stahl, B. C., Schroeder, D., & Rodrigues, R. (2023). Ethics of artificial
intelligence: Case studies and options for addressing ethical challenges
(p. 116). Springer Nature.

Suresh, H., & Guttag, J. (2021). A framework for understanding sources of
harm throughout the machine learning life cycle. In Proceedings of the
1st ACM Conference on Equity and Access in Algorithms, Mechanisms,
and Optimization (pp. 1–9).

Takyar, A. (2023). AI model security: Concern, best practices, and
techniques. Retrieved December 14, 2023, from
https://www.leewayhertz.com/ai-model-security/

https://www.ibm.com/watson/explainable-ai
https://doi.org/10.1080/0960085X.2022.2026621
https://doi.org/10.1016/j.socscimed.2020.113172
https://towardsdatascience.com/explainable-ai-9a9af94931ff
https://www.leewayhertz.com/ai-model-security/


Taylor, R. R., O’Dell, B., & Murphy, J. W. (2024). Human-centric AI:
philosophical and community-centric considerations. AI & Society, 39,
2417–2424. https://doi.org/10.1007/s00146-023-01694-1

World Economic Forum (WEForum). (2022). Why artificial intelligence
design must prioritize data privacy. Retrieved July 7, 2022, from
https://www.weforum.org/agenda/2022/03/designing-artificial-
intelligence-for-privacy/

Zapechnikov, S. (2020). Privacy-preserving machine learning as a tool for
secure personalized information services. Procedia Computer Science,
169, 393–399.

OceanofPDF.com

https://doi.org/10.1007/s00146-023-01694-1
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://oceanofpdf.com/


7
Artificial general intelligence
DOI: 10.1201/9781003486817-7
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Define Artificial Narrow Intelligence (ANI), Artificial General Intelligence (AGI), and
Artificial Super Intelligence (ASI).

2. Differentiate between ANI, AGI, and ASI based on their capabilities and characteristics.
3. Identify the societal and ethical implications of ANI, AGI, and ASI in the context of

advancements in AI, as well as their potential benefits and risks.
4. Understand the basic concepts of robotics and embodied intelligence, the philosophy of

mind, and the future of AGI.
5. Recognize real-world examples of AGI-like technologies in different applications,

including robotics, self-driving cars, virtual assistants, and natural language processing.

7.1 Categories of artificial intelligence
Artificial intelligence is classified into three categories: Artificial Narrow
Intelligence (ANI), Artificial Super Intelligence (ASI), and Artificial
General Intelligence (AGI). ANI is usually regarded as weak and limited in
scope due to its capacity to perform a specific task, such as winning a chess
game or identifying a particular individual in a series of images, as
demonstrated by applications like Siri and Alexa. On the contrary, AGI and
ASI are considered strong AIs as they prominently incorporate human
behavior, such as tone and emotion interpretation. Furthermore, while AGI

https://dx.doi.org/10.1201/9781003486817-7


performs at the same level as humans, ASI (also known as super
intelligence) surpasses humans’ intelligence and capability.

AGI is the theoretical concept of a machine that can learn, understand,
adapt, and apply knowledge across a wide array of tasks, similar to human
intelligence. Unlike specialized AI systems designed for specific tasks (e.g.,
playing chess or recognizing images), AGI aims to replicate the
comprehensive cognitive abilities of human beings. AGI seeks to create
machines capable of flexible thinking, problem-solving, creativity, and
understanding context across diverse domains without requiring
reprogramming for each new task. The pursuit of AGI involves creating
algorithms, architectures, and models that enable machines to generalize
their learning and apply knowledge from one domain to another, similar to
human cognition. Achieving AGI is still challenging due to the complexity
of human intelligence and the complex nature of learning, reasoning, and
decision-making.

Research in AGI spans various disciplines, such as cognitive science,
neuroscience, philosophy, and computer science. While AGI holds immense
potential for revolutionizing industries like healthcare, science, and more, it
raises profound ethical, societal, and existential concerns about the impact
of creating machines with human-like intelligence. The quest for AGI is an
ongoing endeavor that involves scientific advancements and requires
consideration of the implications and responsibilities associated with
developing such powerful AI.

7.2 What makes an intelligence general?
General intelligence is characterized by flexibility that allows humans or AI
systems to adapt to new situations, tasks, or environments without specific
programming or training for each scenario. It encompasses complex



capabilities that enable adaptive and versatile problem-solving across
various domains. Moreover, general intelligence involves the capacity to
learn efficiently and not just to memorize facts but to understand the
underlying principles, patterns, and relationships. The learning encompasses
acquiring new information, skills, and concepts that can be applied across
various contexts.

Reasoning and problem-solving skills are also crucial aspects of general
intelligence as they involve analysis of complex problems, decomposing
them into manageable components, and devising effective strategies to
solve them. This requires deductive and inductive reasoning, critical
thinking, and creative problem-solving. Additionally, general intelligence
allows for transfer learning, where knowledge, skills, and experiences from
one domain benefit performance in unrelated tasks. Applying learning from
one area to others enhances overall adaptability and problem-solving
ability.

Planning is another crucial facet of general intelligence, which involves
the capacity to formulate a sequence of actions to achieve specific goals
while considering different possible scenarios and outcomes. Notably, AGI
aims to develop systems that can strategize, foresee consequences, and plan
courses of action in dynamic and uncertain environments. Furthermore,
metacognition plays a vital role in general intelligence. It refers to being
aware of your thinking processes. A generally intelligent being or AI system
can not only solve problems but also understand how they solved them,
allowing them to improve their approach in the future and apply it to similar
situations. Moreover, analogy and abstraction are also essential aspects of
general intelligence. Analogy and abstraction entail the capability of
humans or AI systems to recognize similarities and underlying patterns
across diverse situations and engage in reasoning about abstract concepts.



This ability to reason through analogy and abstraction enhances problem-
solving and adaptability across various domains.

Human intelligence thrives through understanding the nuances of
language, vision, the unwritten rules of social interaction, and the hidden
connections between seemingly unrelated things. Therefore, for AGI to
demonstrate human intelligence, it must go beyond literal interpretation,
grasp the context of situations, and develop a rudimentary sense of
“common sense” to operate effectively in the real world. AGI developers
face the challenge of creating AI systems that mimic the cognitive abilities
of humans, enabling machines to reason, learn from various sources, and
solve problems across domains with human-like flexibility and adaptability.

7.3 Approaches for developing AGI
There are various approaches to developing AGI, each offering unique
insights and presenting challenges in creating human-like cognitive
capabilities in machines. Firstly, symbolic AI, rooted in logic and rules,
focuses on representing knowledge and problem-solving through symbols
and rules. It involves encoding information into a symbolic format,
employing logical operations to simulate human reasoning, and using
inference rules to make conclusions. Symbolic systems excel in
representing explicit knowledge but often struggle with uncertainty and
handling large-scale, unstructured data, limiting their capacity for true
generalization.

Artificial neural networks, particularly deep learning, represent a
dominant approach to achieving AGI. These networks are designed to
mimic the structure and function of the human brain, with the potential to
replicate human-like learning and intelligence. Deep learning involves
interconnected artificial neurons arranged in layers, learning to recognize



patterns and relationships by being exposed to vast datasets during training.
Their ability to learn from diverse data types, excel in pattern recognition
and problem-solving, and continuously improve makes them vital
contributors to AGI development. However, challenges such as their black-
box nature and intensive computational demands should be addressed to
exploit their full potential.

Also, evolutionary algorithms and genetic programming, inspired by
biological evolution, offer alternative AGI approaches. These methods
involve generating and evolving populations of solutions to problems,
mimicking the process of natural selection to improve performance over
iterations. While they excel in optimization and adapting to changing
environments, they often face challenges in scalability and efficiency for
more complex problems.

Moreover, hybrid models combine various AI techniques to leverage
their capabilities and compensate for their drawbacks. For instance,
integrating symbolic reasoning with neural networks aims to combine the
structured knowledge representation of symbolic AI with the learning and
pattern recognition abilities of neural networks. Hybrid models seek to
harness the complementary strengths of different approaches to achieve
more robust and flexible AGI systems.

Furthermore, artificial consciousness is another approach to developing
AGI that seeks to instill AI systems with subjective experiences and
awareness similar to human consciousness. It draws inspiration from
theories in cognitive science and philosophy and seeks to understand and
replicate the mechanisms underlying human consciousness. While still in its
infancy, artificial consciousness holds the potential to create more adaptable
and ethics-aware AI systems, although significant technical, philosophical,
and ethical challenges remain to be addressed.



7.4 Philosophy of mind
In pursuing AGI, the philosophy of mind serves as both a guiding principle
and a critical inquiry. The philosophy of mind is a branch of philosophy that
examines the nature of consciousness, intelligence, and the mind. It
explores fundamental questions about what it means to have a mind, how
consciousness arises, and the relationship between the mind, the brain, and
the external world. Central to this field is the exploration of consciousness,
arguably one of the most intriguing aspects of human existence.
Philosophers of mind explore the nature of subjective experience and how
the brain’s processes generate our inner lives, including sensations,
thoughts, and emotions.

Additionally, in the domain of the philosophy of mind, the mind-body
problem is a core issue that deals with the relationship between mental
states (such as thoughts, beliefs, and perceptions) and physical states
(neural processes in the brain). Philosophers explore different theories, from
dualism (which posits a fundamental distinction between mind and body) to
materialism (which suggests that mental states are ultimately reducible to
physical states). Intelligence is another focal point at which philosophers
seek to understand the nature of intelligence, what it means to be intelligent,
whether intelligence is solely a product of the brain’s computational
abilities, and whether artificial systems can possess true intelligence. This
inquiry delves into questions about the nature of reasoning, problem-
solving, learning, and the potential for non-biological systems to exhibit
intelligence comparable to or surpassing human intelligence. Moreover, the
philosophy of mind also examines the concept of mental representation and
how the mind represents and interacts with the world. This involves
discussions about perception, cognition, memory, and how mental states are
structured to represent external reality.



Furthermore, this field contemplates the implications of its inquiries on
broader philosophical issues and ethical considerations. It raises questions
about free will, morality, personal identity, and the implication of
advancements in AI and neuroscience on our understanding of ourselves
and our place in the world. The philosophy of mind stands at the
intersection of philosophy, psychology, neuroscience, and artificial
intelligence disciplines. Its inquiries are foundational not only for
understanding the nature of human cognition and consciousness but also for
dealing with the profound implications of these understandings on our
concepts of self, intelligence, and the nature of reality. Thus, the philosophy
of mind provides a rich conceptual framework for understanding the nature
of intelligence and consciousness, which consequently informs the design,
development, and ethical considerations of AGI systems.

7.5 Challenges of artificial general
intelligence
AGI poses several challenges due to its aspiration to replicate human-like
cognitive abilities across diverse domains. The foremost challenge is the
complexity and scale that AGI systems need to comprehend and navigate.
Additionally, handling the vast complexity and scale of information while
maintaining efficiency and accuracy poses substantial technical challenges.
AGI systems must be capable of understanding and operating within real-
world environments, tasks, and datasets, which demands sophisticated
algorithms and computational capabilities.

Another obstacle lies in the absence of a unified theoretical framework
for AGI. Various approaches to AI, such as symbolic AI, neural networks,
evolutionary algorithms, and hybrids, have advanced independently with
their theories and methodologies. Integrating these diverse approaches into



a cohesive, unified model that accounts for the complexity of human-like
intelligence remains a significant challenge. Achieving synergy among
these disparate theories and technologies is crucial for progressing toward
AGI.

Moreover, technological limitations, such as constraints in computational
power, hinder AGI development by restricting the scalability and
complexity of AI systems needed to emulate human-level intelligence
across various tasks and contexts. Addressing these challenges demands
collective efforts across multiple disciplines, including computer science,
neuroscience, philosophy, psychology, and ethics. This requires a holistic
approach that advances technological capabilities while navigating ethical
and philosophical complexities.

7.6 Potential benefits and risks of artificial
general intelligence
AGI holds the potential for transformative impacts across various domains,
yet it also poses significant risks that require careful consideration. It could
enhance efficiency across industries through automation and optimization,
potentially revolutionizing healthcare, natural language, agriculture,
transportation, and logistics. In healthcare, for instance, AGI could
revolutionize disease diagnosis and treatment by analyzing vast amounts of
medical data, accelerating drug discovery, and offering personalized
medication. Additionally, AGI’s ability to process and understand natural
language could significantly improve communication, customer service,
and accessibility for individuals with disabilities. Moreover, AGI might aid
scientific research by quickly processing complex datasets and contributing
to breakthroughs in domains such as climate science, astronomy, and
material science.



However, the power and capabilities of AGI pose significant risks,
including job displacement and economic disruption. Its ability to automate
tasks across industries could result in widespread unemployment,
necessitating societal adaptations and potential retraining programs to
lessen the impact. Additionally, ethical concerns arise regarding the possible
misuse of AGI for malicious purposes, such as autonomous weapons,
cyberattacks, or surveillance, raising questions about accountability and
control.

Another significant risk involves AGI surpassing human intelligence,
leading to an intelligence explosion or the creation of super intelligent
systems that could potentially act in ways unforeseen by their creators. This
scenario poses risks if AGI’s objectives misalign to human values or if the
system lacks appropriate safeguards and control mechanisms. Furthermore,
similarly to conventional AI, the AGI systems could exhibit biases inherited
from the training data, leading to discriminatory or unfair outcomes.
Therefore, ensuring fairness, transparency, and ethical behavior in AGI
systems is crucial to prevent perpetuating societal biases and inequalities.

Managing these risks requires national, regional, and international
collaboration, robust ethical frameworks, and comprehensive regulatory
oversight. Proactively addressing AGI’s societal, ethical, and safety
implications is crucial for harnessing its potential benefits while mitigating
the associated risks. Balancing technological advancement with ethical
considerations is critical in ensuring that AGI serves the best of humanity.

7.7 Indicators of the presence of artificial
general intelligence
Although the realization of full AGI is still a distant goal, its indications are
already being seen in other fields, providing exciting glimpses of its



potential to bring about significant changes. AGI-powered technology can
be found in different domains, for example, the rise of large language
models (LLM) such as the Generative Pre-trained Transformer (GPT)
series, encompassing models like GPT-3, GPT-4, and Google Gemini.
These models demonstrate an exceptional ability to understand and generate
natural language. Additionally, the models have made substantial progress
in understanding context and delivering consistent and contextually
appropriate responses across various topics. They can be used for activities
such as text production, translation, summarization, and assistance in other
written content creation tasks.

Humanoid robots like Sophia demonstrate modest advancements in
general intelligence capabilities despite their limited and specialized
intelligence. These robots are notable for their ability to interact with
humans, recognize faces, and engage in conversation. Another indicator of
AGI is found in self-driving cars developed by companies such as Tesla and
Waymo, which exemplify AGI-like capabilities in navigating complex
environments. These vehicles integrate various AI technologies, such as
machine learning, computer vision, and decision-making algorithms, to
perceive their surroundings, make real-time decisions, and navigate roads
autonomously. While not yet fully autonomous in all conditions, they
demonstrate significant progress toward vehicles that can handle diverse
and unpredictable driving scenarios.

Moreover, AI systems in game-playing, such as AlphaGo and AlphaZero
developed by DeepMind, demonstrate remarkable strategic thinking and
learning capabilities that showcase their vicinity to general intelligence.
These systems excel in creating games, for example, chess, Go, and video
games, showcasing adaptive learning and decision-making abilities. While
these AI systems demonstrate certain indications of AGI capabilities, such



as understanding and problem-solving skills, it is crucial to emphasize that
they have not yet achieved AGI status themselves.

7.8 Robotics and embodied intelligence
Robotics and embodied intelligence in the context of AGI involve the
integration of AI algorithms with physical robots to enable machines to
perceive, interact with, and learn from the physical environment. This
integration emphasizes the importance of sensory inputs and motor skills in
shaping an understanding of the world through AI systems. The concept of
embodied intelligence in robotics proposes that intelligence is not solely a
function of algorithms but also the physical manifestation of an entity and
its interactions with the environment. By integrating AI with robots,
developers aim to create systems that learn from and adapt to the physical
world, mirroring how humans and animals learn through interaction and
experience. For instance, robots equipped with sensors such as cameras,
lidar, radar, or tactile sensors gather data from the environment, providing
information about surroundings, objects, and potential obstacles. AI
algorithms process this sensory input to make sense of the environment,
enabling robots to perceive and understand their surroundings.

Also, robots need the ability to act upon their environment through
movement and manipulation. Advanced motor skills involve grasping
objects, navigating environments, and performing complex actions. A
robot’s movements are controlled by AI algorithms, enabling it to interact
with and manipulate objects based on its sensory perceptions. The
combination of perception and action forms a feedback loop that facilitates
learning. As robots interact with the environment, they receive feedback
based on their actions, which helps refine their understanding and decision-
making processes. Through reinforcement learning, the robots can learn



from trial and error, adjusting their behaviors based on the outcomes of their
actions in the physical world.

The integration of AI with robots has numerous real-world applications.
In manufacturing, AI-powered robots can adapt to changing environments
and tasks to optimize production processes. Additionally, robotic systems
can assist surgeons in healthcare, aid in rehabilitation, or support
individuals with disabilities. Moreover, Boston Dynamics exemplifies
embodied intelligence through robots like Spot and Atlas. Spot is an agile
robot dog that utilizes sensors and AI to navigate complex terrain and learn
from interactions, adapting its movements for improved performance.
Whereas, Atlas is an acrobatic humanoid that showcases advanced balance
and dexterity, performing complex maneuvers with stability and agility.

However, challenges persist in achieving robust embodied intelligence in
robotics, such as developing AI systems that can adapt to diverse and
unpredictable real-world scenarios, handle uncertainties, and learn
effectively from physical interactions. Additionally, ensuring the safety,
reliability, and ethical implications of AI-powered robots operating in real-
world settings is critical in this field. Therefore, the synergy between AI and
robotics in achieving embodied intelligence represents a significant step
toward AGI.

7.9 Artificial super intelligence
ASI is the hypothetical future of AGI which is expected to possess
cognitive abilities far beyond human capacity. This will enable it to solve
complex problems, acquire knowledge across multiple domains, and exhibit
creativity and consciousness, fundamentally altering the dynamics of
society and technology. The theoretical concept of ASI remains speculative,
as achieving it poses profound scientific and ethical considerations due to



its potential for immense impact on humanity. Notably, concerns arise
regarding control over AI systems with such capabilities, posing
technological challenges. Therefore, human control over ASI is crucial to
prevent unintended consequences and uphold ethical principles.
Furthermore, it is essential to address concerns regarding safety,
transparency, and ethical alignment in the development and deployment of
ASI to mitigate potential risks and promote beneficial outcomes for society.

7.10 Summary
This chapter provided a detailed overview of AGI, beginning with the
definition and differentiation from other categories of AI (i.e., ANI and
ASI). It then presented the characteristics of AGI, exploring the cognitive
functions necessary for an AI system to demonstrate broad intelligence.
Various approaches for developing AGI, including symbolic reasoning,
artificial neural networks, and hybrids, were presented alongside
discussions on the philosophical foundations of AGI in the philosophy of
mind. Additionally, the chapter examined the inherent challenges in AGI
development and how to address ethical, safety, and control concerns while
weighing the potential benefits and risks across different domains. It further
scrutinized indicators of AGI presence, such as LLMs, humanoid robots,
self-driving cars, and game-playing AI systems, which demonstrate
significant advancements in understanding and problem-solving abilities.
The chapter also discussed the role of robotics and embodied intelligence in
enabling AGI to perceive, interact with, and learn from their environment.
Finally, the concept of ASI was briefly explored, envisioning a future where
AI surpasses human intelligence significantly, accompanied by a discussion
on the associated implications and the imperative for responsible
development and governance.



Exercises
1. Describe three key characteristics differentiating general intelligence from narrow or

specialized intelligence. Provide examples to illustrate these differences.
2. Choose any two challenges associated with AGI development and propose potential

strategies to overcome or mitigate them.
3. Apart from the examples this chapter outlines, describe a recent real-world application or

advancement toward AGI.
4. Describe the applications and potential impacts of AGI on society.
5. Discuss potential advancements, challenges, and the implications of AGI over the next

decade on various aspects of society, including ethics, employment, and technology.
6. Imagine you could design your own AGI system. What key features and abilities would

you prioritize?
7. Describe current AI systems which, to some extent, exhibit early manifestations of AGI.
8. Analyze and compare two philosophical theories or perspectives regarding the nature of

consciousness and its emulation in AGI systems.
9. Discuss a recent advancement in robotics technology that showcases embodied

intelligence principles.
10. Discuss the potential biases in AGI systems trained on real-world data, how they arise,

and propose strategies to mitigate their impact on decision-making and social
interactions.

Further Reading
Baum, S. (2017). A survey of artificial general intelligence projects for

ethics, risk, and policy. Global Catastrophic Risk Institute Working
Paper, 17–1.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar,
E., Lee, P. et al. (2023). Sparks of artificial general intelligence: Early
experiments with GPT-4. arXiv preprint arXiv:2303.12712.

Goertzel, B. (2007). Artificial general intelligence. Edited by Cassio
Pennachin (Vol. 2). Springer.



Goertzel, B. (2014). Artificial general intelligence: Concept, state of the art,
and future prospects. Journal of Artificial General Intelligence, 5(1), 1–
46.

Goertzel, B., Pennachin, C., & Geisweiller, N. (2014). Engineering general
intelligence, Part 1. Atlantis Thinking Machines, 5, 1–318.

Goertzel, B., Pennachin, C., & Geisweiller, N. (2014). Engineering general
intelligence, Part 2: The CogPrime architecture for integrative,
embodied AGI (Vol. 6). Springer.

Pei, Jing, Lei, Deng, Sen, Song, Mingguo, Zhao, Youhui, Zhang, Shuang,
Wu, & Guanrui, Wang. (2019). Towards artificial general intelligence
with hybrid Tianjic chip architecture. Nature, 572(7767), 106–111.

Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to
artificial general intelligence. In Goertzel, B., Pennachin, C. (eds)
Artificial general intelligence (pp. 1–30). Springer.
https://doi.org/10.1007/978-3-540-68677-4_1

Voss, P. (2007). Essentials of General Intelligence: The Direct Path to
Artificial General Intelligence. In Goertzel, B., Pennachin, C. (eds)
Artificial general intelligence, 131–157. Springer.
https://doi.org/10.1007/978-3-540-68677-4_4

Wang, Pei, & Goertzel, B. (Eds.). (2012). Theoretical foundations of
artificial general intelligence (Vol. 4). Springer Science & Business
Media.

OceanofPDF.com

https://doi.org/10.1007/978-3-540-68677-4_1
https://doi.org/10.1007/978-3-540-68677-4_4
https://oceanofpdf.com/


8
Machine learning step-by-step
practical examples
DOI: 10.1201/9781003486817-8
This chapter has been made available under a CC-BY-NC-ND 4.0 license.

Upon completing this chapter, learners should be able to:

1. Understand how to approach various machine learning problems.
2. Apply practical data preprocessing skills to address machine learning problems.
3. Apply classification algorithms to classify data into distinct categories and interpret the

results.
4. Utilize regression algorithms on real-world datasets to make predictions and evaluate

model performance.
5. Apply clustering algorithms to partition real-world data into groups based on similarity

and interpret and visualize results.
6. Apply association rules techniques to discover relationships between items in a real-

world dataset.

8.1 Case study 1: Classification problem
This case study focuses on detecting diabetes using a machine learning
classifier, where the data samples are classified into two classes (i.e.,
positive or negative). The subsequent subsections outline the steps involved
in handling this particular case study.

https://dx.doi.org/10.1201/9781003486817-8


8.1.1 Problem definition
Diabetes is a chronic disease that leads to elevated levels of blood sugar.
When this condition develops, individuals may experience a range of
uncomfortable, dangerous, and potentially life-threatening symptoms.
These symptoms include high blood pressure, increased susceptibility to
infections, heart disease risks, gastroparesis, blood vessel damage,
malfunctioning of the pancreas, and irreversible blindness.

8.1.1.1 Description of the dataset
The case study utilizes the widely known Pima Indian Diabetes Dataset, a
popular dataset for machine learning tasks. This dataset can be used to train,
test, and evaluate new machine learning algorithms and develop models for
diabetes prediction. It is publicly available for download from the Kaggle
data science repository (https://www.kaggle.com/datasets/uciml/pima-
indians-diabetes-database). The dataset consists of 768 records of women at
least 21 years old. Each record contains nine features (8 input and 1
output/outcome/target) as follows:

Pregnancies: Number of times pregnant
Glucose: Plasma glucose concentration 2 hours in an oral glucose
tolerance test
BloodPressure: Diastolic blood pressure (mm Hg)
SkinThickness: Triceps skin fold thickness (mm)
Insulin: Serum insulin concentration (mu U/ml)
BMI: Body mass index (weight in kg/height in m2)
DiabetesPedigreeFunction: Diabetes pedigree function
Age: Age (years)
Outcome: The target feature is a binary variable (i.e., 1 or 0) indicating
whether the patient has diabetes or not (i.e., positive or negative).

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database


8.1.2 Loading libraries
Loading the required libraries for data manipulation and model
development is essential. The import statement is used to load a library in
Python. Therefore, the following code snippet loads the necessary libraries
required in this case study. More details about each imported library are
provided using comments indicated by the hash sign (#).

# importing the pandas library for data manipulation
import pandas as pd 
# importing the numpy library for mathematical computations
import numpy as np 
# importing the scipy library for data transformation
from scipy.stats import zscore 
# importing the seaborn library for data visualization
import seaborn as sns 
# importing the matplotlib library for data visualization
import matplotlib.pyplot as plt 
# importing train_test_split function from sklearn library
# for splitting the dataset into the train and test sets
from sklearn.model_selection import train_test_split 
# importing logistic regression algorithm from sklearn library
from sklearn.linear_model import LogisticRegression 
# importing evaluation metrics from sklearn library
from sklearn.metrics import precision_score, recall_score, 
f1_score,accuracy_score, confusion_matrix, 
ConfusionMatrixDisplay

8.1.3 Loading dataset
Once the necessary libraries have been imported, the subsequent step
involves loading the dataset file (in this case, diabetes.csv) using the
read_csv method in the panda’s library. The dataset should be loaded from
its stored file path, which may vary depending on the file’s location within
the computer being used. For simplicity, storing the dataset file and the
code or notebook file in the same directory is advised where there is no
need to specify the absolute file path, as seen in the following code snippet.



This code snippet shows the content of the first five records (depicted in
Figure 8.1) using the data.head(5) command statement.

# Loading the diabetes dataset
diabetes_data = pd.read_csv("diabetes.csv")
# Displaying the first few records
print("First 5 records:")
print(diabetes_data.head(5))

Figure 8.1 The first five records of the dataset.

8.1.4 Data summary
After loading the dataset, it is essential to get a summary of the loaded
dataset. As shown in the following code snippet, the info() method can be
used to provide details such as the number of rows and columns, the data
types of the columns, and the memory usage of the dataset. Figure 8.2
shows the output of the data.info() command statement.

diabetes_data.info()



Figure 8.2 Data summary.

8.1.4.1 Descriptive statistics
There are various ways of summarizing and describing the main properties
of attributes of the dataset in Python, such as the central tendency,
dispersion, and shape. For instance, the describe() method is used to display
the measures of central tendency for all numerical attributes in the dataset.
In this case, the following code snippet is used for such purposes. Figure
8.3 shows the output of the data.describe() command statement.

diabetes_data.describe().round(2)



Figure 8.3 Descriptive statistics for each column in the dataset.

Additionally, the following code snippet computes and displays the
number of records in each class and their corresponding percentages. As it
is shown in Figure 8.4, the classes labeled as 0 (i.e., negative) and 1 (i.e.,
positive) have a total of 500 (65.10%) and 268 (34.90%) records,
respectively. These statistics show that the two classes are imbalanced, as
the number of records in the negative class is almost double that of the
positive class. This gives insightful information to help you understand the
class composition of the dataset and consider potential implications for data
analysis and modeling.

 # Counting the number of samples in each target class
target_counts = diabetes_data['Outcome'].value_counts()
print("\nClass Counts:")
print(target_counts)
# Calculating the percentage of samples in each target class
target_percentages = (target_counts / len(diabetes_data)) * 100
print("\nClass Percentages:")
print(target_percentages)



Figure 8.4 The class distribution of the dataset.

8.1.4.2 Data visualization
It is essential to visually analyze the characteristics of the dataset in order to
get insights such as the relationships and comparisons between features,
checking for the presence of outliers and other data-relevant insights. The
following code snippet displays the visual representation of the class
distribution in the dataset. The resultant output is depicted in Figure 8.5.



Figure 8.5 Class distribution.

 # Visualizing the class distribution
sns.set(style="whitegrid")
plt.figure(figsize=(8, 6))
plt.title("Class Distribution")
sns.set_palette("Set2")
sns.countplot(x='Outcome', data=diabetes_data)
plt.xlabel("Target Class")
plt.ylabel("Count")
plt.show()

Furthermore, scatter plots are commonly used to visualize insights about a
dataset, such as correlations between features, outlier detection, and feature
distribution. For example, the subsequent code generates a scatter plot that
helps examine the relationship between BMI and age features using the
scatterplot() function. As depicted in Figure 8.6, the resulting scatter plot
enabled the discovery of outliers in the dataset, as seen in the two red ovals.



plt.figure(figsize=(8, 6))
sns.scatterplot(x="bmi", y="age", data=diabetes_data, sizes=(1, 
8), hue="Outcome")
plt.title("Age against BMI Scatterplot")
plt.show()

Figure 8.6 Scatter plot for age against BMI.

Moreover, a boxplot visually displays the lower fence, the first quartile
(25th percentile), the median (50th percentile), the third quartile (75th
percentile), and the upper fence values of the feature, along with any
outliers. The following code snippet generates the boxplot showing the BMI
feature’s outliers. The resulting boxplot, depicted in Figure 8.7, suggests
that the BMI values below 18 and above 50 are considered outliers. It is
worth noting that the code snippet for the box plot and scatter plot can also
be used to detect the presence of outliers in other dataset features apart from
the BMI feature.



plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("BMI Boxplot")
plt.show()

Figure 8.7 BMI box plot (with outliers).

8.1.5 Data preprocessing
Data preprocessing is vital to cleaning, refining, transforming, and
formatting data to ensure its suitability for machine learning tasks. Data
preprocessing can significantly impact the effectiveness and accuracy of the
developed models, as the quality of the data used directly influences them.
As part of data preprocessing, we showcase how to handle outliers and
missing values and standardize data to prepare it for subsequent steps.



8.1.5.1 Data cleaning
This section focuses on handling outliers and missing values in the dataset,
as detailed below.
8.1.5.1.1 Outliers
The BMI feature in the dataset contains outliers; therefore, outliers for the
BMI feature that fall below the lower fence are trimmed because their
values are zero. Note that the values within the lower and upper fences can
either be trimmed or winsorized (replacing an outlier value with the nearest
non-outlier value). However, in this case, the BMI values above the upper
fence are replaced with the value of the nearby upper fence. The following
code snippet demonstrates removing and trimming outliers and plotting the
resultant box plot, as shown in Figure 8.8.

# Removing records with bmi value of zero
diabetes_data = 
diabetes_data.drop(diabetes_data[diabetes_data['bmi'] == 
0].index, axis=0)
# Winsorizing bmi outliers above the upper fence
bmi_upper_fence = 50
diabetes_data['bmi'] = 
diabetes_data['bmi'].clip(upper=bmi_upper_fence)
# Visualizing bmi distribution after handling outliers
plt.figure(figsize=(8, 6))
sns.boxplot(x=diabetes_data['bmi'])
plt.title("bmi Distribution (Outliers Removed)")
plt.show()



Figure 8.8 BMI box plot after removing and trimming outliers.
8.1.5.1.2 Missing values
As the dataset for this case study contains no missing values, some values
of the “Age” feature are intentionally set to null in the original dataset to
demonstrate how to deal with missing values. Consequently, the resulting
dataset contains some missing values. The following code snippet is used to
check the presence of missing values for all features in the dataset. Figure
8.9 shows no missing values for all features except for the “Age” feature,
which comprises three null values.

# Checking for missing values
print(diabetes_data.isnull().sum())



Figure 8.9 Checking the presence of missing values for all
features.

Moreover, several methods can be used to handle the identified missing
values in the “Age” feature, including imputation by using measures of
central tendencies (mean, median, or mode) or removing the corresponding
records that contain missing values. In this case, the missing values are
filled by the median value of the “Age” feature, as shown in the following
code snippet. The median was chosen after examining the mean, mode, and
median of the "Age" and determining that the median value was the most
suitable for this dataset.

# Imputing missing values in the age feature
diabetes_data['age']=diabetes_data['age'].fillna(diabetes_data[
'age'].median())



8.1.5.2 Data standardization
Before data standardization, the target feature (i.e., Outcome) should be
separated from the rest (i.e., input features) as shown in the following code
snippet. It is worth noting that the target feature is separated to avoid
standardizing its values.

# separating the target feature from the input features
predictor_vars = diabetes_data.drop("Outcome", axis=1)
target_var = diabetes_data["Outcome"]

Moreover, after separating the target feature, the input features are
standardized using a z-score, as showcased in the following code snippet.
Figure 8.10 depicts the standardized values of the input features. Note the
difference between the standardized values (Figure 8.10) and non-
standardized values (Figure 8.1).

# Standardizing the features
standardized_predictors = predictor_vars.apply(zscore)
# display the first few records
print(standardized_predictors.head())

Figure 8.10 Standardized input features.

8.1.6 Split-out the dataset
After data preprocessing, the dataset should be split into two sets: a training
and a test set. The training set is used to train the model, and the test set is
used to evaluate the model’s performance. The following code snippet splits
the dataset into two sets in a ratio of 80:20 for the training and testing sets



(i.e., test_size=0.2), respectively. It is worth noting that random_state=42
sets a value to ensure that the random splitting of the dataset will be
reproducible.

# Splitting the data into train and test sets
train_predictors, test_predictors, train_targets, test_targets 
= train_test_split(standardized_predictors, target_var, 
test_size=0.20, random_state=42)

8.1.7 Choosing classification algorithm
Notably, there are many classification algorithms; therefore, one needs to
spot-check and select just one or a few algorithms that can properly address
the problem. Spot-checking explores which algorithm(s) is the best
performing on the respective problem. Some popular classification
algorithms include Support Vector Machine, Decision Tree, K-Nearest
Neighbor (KNN), Logistic Regression, Random Forest, and Naive Bayes.
In this case study, the Logistic Regression algorithm was selected due to its
simplicity, interpretability, and computational efficiency in modeling the
probability of a binary outcome. This algorithm is arbitrarily selected for
demonstration purposes.

8.1.8 Training the model
The logistic regression algorithm is trained using the training set, which
allows it to learn the relationship between the input and the target features.
Therefore, the following code snippet demonstrates the training of the
Logistic Regression algorithm.

# initialize the instance of the algorithm
logistic_model = LogisticRegression()
# using the instance to train the algorithm
logistic_model.fit(train_predictors, train_targets)



8.1.8.1 Model evaluation
It is essential to evaluate model performance on the test set based on
different metrics such as Confusion Matrix, Accuracy, Precision, Recall, F-
score, Sensitivity, Specificity, ROC, and AUC. The following code snippet
evaluates the model performance based on Accuracy, Precision, Recall, and
F1-score, and the performance evaluation results are depicted in Figure
8.11.

 # Making predictions on the test set
test_predictions = logistic_model.predict(test_predictors)
# Computing and printing the performance metrics
print("Accuracy:", accuracy_score(test_targets, 
test_predictions))
print("Precision:", precision_score(test_targets, 
test_predictions))
print("Recall:", recall_score(test_targets, test_predictions))
print("F1 Score:", f1_score(test_targets, test_predictions))

Figure 8.11 Model performance evaluation results.

Furthermore, the confusion matrix is also used to evaluate the model’s
performance by observing the number of predicted labels against the actual
labels in a given class. The following code snippet generates the confusion
matrix of the model, and the results are depicted in Figure 8.12. Notably,
the number of true negatives is 82, false negatives are 15, false positives are
22, and true positives are 33. These results imply that the model can
correctly predict many instances of the negative class compared to the
positive class.



# Visualizing the confusion matrix
cm = confusion_matrix(test_targets, test_predictions, 
labels=logistic_model.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, 
display_labels=logistic_model.classes_)
plt.figure(figsize=(8, 6))
disp.plot()
plt.title("Confusion Matrix")
plt.grid(False)
plt.show()

Figure 8.12 Confusion matrix.

8.1.8.2 Saving the model
In machine learning, saving the model involves storing a trained model on a
computer storage or external drives, which enables the model to be reused
to make predictions on new, unseen data without retraining it from scratch.



Various libraries, such as joblib and pickle, can be used to save the trained
model. The following code snippet demonstrates how the joblib library
using the dump() method is employed to save the trained model in the
current working directory with the file named logistic_model.joblib.

# Saving the trained model
joblib.dump(logistic_model, 'diabetes_logistic_model.joblib')

8.1.8.3 Inferencing
Once a model has been trained and saved, it can be used to classify/predict
new, unseen data that were not part of the training and test sets. During
predictions, the new data has to undergo the same data preprocessing steps
applied during the training phase. Suppose the unseen data needs to be
classified using the saved model; it will have to be checked for outliers and
standardized using the zscore() function as presented in the previous steps.
As shown in the following code snippet, the new, unseen data has been
classified as 1 (i.e., positive) after undergoing the necessary preprocessing
steps and being fed into the trained and saved model. Figure 8.13 shows
that the new, unseen data has been classified as 1 (i.e., positive).

# load the model
loaded_model = joblib.load('diabetes_logistic_model.joblib')
# Calculate the mean and standard deviation of each feature 
from the training data
feature_means = diabetes_data.drop("Outcome", axis=1).mean()
feature_stds = diabetes_data.drop("Outcome", axis=1).std()
# Defining new, unseen data
new_data = [6, 148, 72, 35, 0, 33.6, 0.627, 50] # Example 
realistic data
# Standardize the new data using the means and standard 
deviations from the training data
standardized_new_data = (new_data - feature_means) / 
feature_stds
# Reshaping the standardized new data
reshaped_new_data = standardized_new_data.values.reshape(1, -1)
# Creating a DataFrame with feature names and standardized new 
data
feature_names = ['pregnant', 'glucose', 'bp', 'skin', 



'insulin', 'bmi', 'pedigree', 'age']
new_data_df = pd.DataFrame(reshaped_new_data, 
columns=feature_names)
# Making predictions on the standardized new data
print("\nPrediction on New Data:")
print("The new data is predicted as class : ", 
loaded_model.predict(new_data_df)[0])

Figure 8.13 Result of new data prediction.

8.2 Case study 2: Regression problem
This case study focuses on regression analysis using an advertising dataset.
This problem demonstrates the relationship between advertising and sales
and aims to develop a model to predict sales based on advertising budgets.
The following subsections outline the steps in developing a prediction
model using this dataset.

8.2.1 Problem definition
Sales prediction through advertising on TV, radio, and a newspaper is
complex due to a number of factors that can influence sales, including the
target audience, message, medium, budget, and the timing of the advertising
campaign. Consequently, it becomes challenging to accurately predict how
much sales will increase as a direct outcome of advertising. This section
aims to show step-by-step how to develop a regression model that can
predict sales based on advertising on TV, radio, and a newspaper.

8.2.1.1 Description of the dataset
The advertising dataset used in this case study is a collection of structured
data that contains information related to advertising costs across multiple
channels, including radio, TV, and newspapers. The dataset is used to



understand the correlation between advertising expenditures and the
generated sales revenue. It also compares the effectiveness of different
advertising channels (i.e., TV, radio, and newspaper). The dataset is
publicly available for download from the Kaggle data science repository
(https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset).
The dataset contains 200 rows and the following four features:

TV: The amount spent on TV advertisements.
Radio: The amount spent on radio advertisements.
Newspaper: The amount spent on newspaper advertisements.
Sales: The target feature shows the total sales revenue generated.

8.2.2 Loading libraries
As pointed out in Case Study 1, importing the required libraries for data
manipulation and model development is essential. The following code
snippet imports the required libraries in this case study. Again, more details
about each library are provided using comments indicated by the hash sign
(#).

# library to store data
import pandas as pd 
# library to perform mathematical #computations on matrices
import numpy as np 
# library to calculate #standardization
from scipy.stats import zscore 
# library to visualize data
import seaborn as sns 
# library to visualize data
import matplotlib.pyplot as plt
# library #to split the data in train and test data 
from sklearn.model_selection import train_test_split 
# library #to use for machine learning (eg., here logistic 
regression) algorithm
from sklearn.linear_model import LinearRegression 
# importing the joblib library for model saving
import joblib

https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset


8.2.3 Loading dataset
After importing the required libraries, the next step is to load the dataset file
(i.e., advertising.csv) from its stored file path using the read_csv function in
the pandas library, as shown in the following code snippet. The output of
the code snippet is displayed in Figure 8.14, showing three records using
the head() function.

advertising_data = pd.read_csv("advertising.csv")
# displaying the first three records
advertising_data.head(3) 

Figure 8.14 The first three records of the dataset.

8.2.4 Data summary
The info() method is used to display the contents and gain key insights into
the dataset. As shown in the following code snippet, the info() method
displays the number of rows and columns, the data types of the columns,
and the memory usage of the dataset. Figure 8.15 shows the output of the
advertising_data.info() command statement.

advertising_data.info()



Figure 8.15 Data summary.

8.2.4.1 Descriptive statistics
As demonstrated in Case Study 1, descriptive statistics are used to
summarize and describe the main features of a dataset. Therefore, in this
case study, the describe() method is again used to display the measures of
central tendency for all numerical columns in the dataset, as shown in the
following code snippet. Figure 8.16 shows the output of the
advertising_data.describe() command statement.

advertising_data.describe()



Figure 8.16 Descriptive statistics for TV, radio, newspaper, and
sales columns in the dataset.

8.2.4.2 Data visualization
Data visualization techniques are used to visually analyze the features of the
dataset in order to get insights such as the relationships, comparisons
between features and other data-relevant insights. The following code
snippet displays the visual representation of the correlation matrix (e.g.,
showing the relationship among the features). The resultant output is
depicted in Figure 8.17. Note that the results in Figure 8.17 show that
values closer to 1 indicate stronger positive relationships, while values
closer to 0 suggest weaker or no linear relationships.

# compute the correlation matrix
corr = advertising_data.corr()
# heatmap with annotations
plt.figure(figsize=(7,7))
plt.title("Correlation among features")
sns.heatmap(corr, annot=True, cmap="coolwarm", 
fmt=".2f",square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()



Figure 8.17 Correlation matrix.

In addition, the following code snippet displays the visual representation
of the scatter plots to show the relationship between the target and the input
features. The resultant output is depicted in Figure 8.18. Note that the
steeper the slope of the regression line fitted through the data points in a
scatter plot, the stronger the correlation between the features in the dataset,
as illustrated in Figure 8.18.



Figure 8.18 Scatter plots for the target against the input features.

import matplotlib.pyplot as plt
import seaborn as sns
# Create a figure with three subplots
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# Scatter plot: TV against Sales
sns.regplot(x="TV", y="Sales", data=advertising_data, 
ax=axes[0])
axes[0].set_title("TV vs. Sales")
# Scatter plot: Radio against Sales
sns.regplot(x="Radio", y="Sales", data=advertising_data, 
ax=axes[1])
axes[1].set_title("Radio vs. Sales")
# Scatter plot: Newspaper against Sales
sns.regplot(x="Newspaper", y="Sales", data=advertising_data, 
ax=axes[2])
axes[2].set_title("Newspaper vs. Sales")
# Adjust spacing between subplots
plt.tight_layout()
# Display the figure
plt.show()

8.2.5 Data preprocessing
In this case study, the data preparation techniques are applied to handle
outliers and missing values, along with data transformation, to ensure its
readiness for subsequent steps in the modeling phase.

8.2.5.1 Data cleaning
In this case study, the implemented data cleaning methods aim to explore
possibilities for handling outliers, addressing missing values, and executing
data transformations.



8.2.5.1.1 Outliers
The provided code snippet generates a box plot highlighting outliers, as
depicted in Figure 8.19. It is evident from the dataset that only the
"newspaper" attribute contains two outlier points. These outliers constitute a
small proportion relative to the dataset’s overall size and are especially
noteworthy in the context of the regression problem at hand. Most
regression algorithms exhibit reduced sensitivity to outliers, and since the
dataset includes occasionally plausible values, their presence is considered
for analysis. It is not a strict rule that outliers must be removed from the
dataset on every occasion. The outliers were not removed, imputed, or
transformed in this specific use case.

advertising_data.plot.box(figsize=(5,5))

Figure 8.19 Box plot for outlier identification.



8.2.5.1.2 Missing values
The following code snippet is used to assess the presence of missing values
across all dataset features to handle missing values. As illustrated in Figure
8.20, no missing values are detected for any of the features. Consequently,
no techniques will be applied to handle missing values.

advertising_data.isnull().sum()

Figure 8.20 Checking the presence of missing values for all
features.

8.2.5.2 Feature selection
The previous correlation matrix in this case study indicates that the features
are not highly correlated, as their correlation value is less than 0.35. Based
on the correlation values, two features with high correlation values (i.e.,
above 0.7 or 0.8) might be redundant in providing information to the model.
Therefore, one can be eliminated. In this dataset, all the input features can
be retained (i.e., none should be eliminated based on the correlation value)
since their correlation values are less than 0.35. It is important to note that
when there is a zero correlation value between the independent variables
and the dependent variable, it necessitates the elimination of the
independent variable. The correlation values between sales and TV, Radio,
and Newspaper are 0.9, 0.35, and 0.16, respectively (i.e., all are not equal to



zero). Therefore, none of the attributes (i.e., TV, Radio and Newspaper) are
dropped from the dataset.

8.2.5.3 Data transformation
Upon examining the range of values in the features within the dataset, it
becomes apparent that they are not significantly disparate. For example, the
"Radio" feature ranges from 0 to approximately 50, "Newspapers" from 0 to
about 115, and "Sales" from approximately 1.6 to 27. The only feature that
notably stands out is "TV," ranging from 0.7 to nearly 300. Despite the
scales not differing drastically (except for "TV"), and considering that the
dataset pertains to advertising data where higher values are expected for TV
advertisement due to its broader reach, it might be acceptable to forgo
normalization. However, it is suggested to experiment with normalization
and document any observed differences at the conclusion of the model
training.

8.2.6 Choosing regression algorithm
Given the plethora of regression algorithms available, it becomes crucial to
spot-check to discern and choose the most suitable algorithm(s) for
addressing a specific problem. In this case study, the Multivariate Linear
Regression algorithm is selected due to the presence of multiple
independent variables and a single dependent variable. It can offer insight
into complex relationships within the data.

8.2.7 Training the model
The dataset is divided into training and test sets containing the independent
and dependent variables, denoted as X_train, X_test, y_train, and y_test,
respectively. Specifically, the dataset is split into a training set comprising



75% of the data and a test set comprising 25% of the data. Such splitting is
done using the following code snippet.

# X_train and y_train will be used for training the model,      
# X_test for testing the models predictions, y_test for 
evaluating the model predictions.
X_train, X_test, y_train, y_test = train_test_split(features, 
target, test_size=0.25, random_state=42)

The model is initialized after splitting the data into training and test sets.
Since the Multivariate Linear Regression model is used, the initialized
model is LinearRegression() and is trained using the training set as shown
in the following code snippet.

# initialize the instance of the algorithm
lr_model = LinearRegression()
# using the instance to training the algorithm
lr_model.fit(X_train, y_train)

Figure 8.21 Output showing the y-intercept value of the linear
regression model.

Finding the model equation (estimated Sales) starts by finding the
estimated regression coefficients. The first regression coefficient is the y-
intercept and is computed in the following code snippet. In the code
snippet, the value of the y-intercept is estimated equal to
2.778303460245283, as shown in the subsequent output.

lr_model.intercept_

The other regression coefficients are computed from the following code
snippet. Here, the values of coefficients of TV, Radio, and Newspapers are
estimated to equal 0.04543356, 0.19145654, and 0.00256809, respectively,
as shown in the subsequent output in Figure 8.22.



lr_model.coef_

Figure 8.22 Output showing the coefficients of the linear
regression model.

8.2.7.1 Model equation
After estimating the regression coefficients, the equation of the model can
now be determined. Using the value of the regression coefficients, the
estimated Sales can be computed as follows:

8.2.7.2 Evaluating the model
After obtaining the model equation, it is essential to evaluate model
performance using different performance metrics for regression problems.
These metrics include Mean Square Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2 or
R-Square), Adjusted R-squared, Mean Percentage Error (MPE), and
Coefficient of Variation (CV). For demonstration purposes, only MSE and
R-Square are used to evaluate the model.

8.2.7.3 Evaluating the model using MSE
In the following code snippet, the X_test represents independent variables
used to predict the value of the dependent variable (Sales), here y_predict.
The predicted dependent variable (y_predict) and actual dependent variable
(y_test) are subjected to the MSE function (mean_squared_error()) to

calculate the value of MSE. The value of the MSE obtained is
2.880023730094193, as shown in the subsequent output in Figure 8.23.

Estimated/Predicted Sales

= 2.7783 + 0.0454 ∗ TV + 0.1914 ∗ Radio + 0.0026 ∗ Newspaper



This indicates better model performance in terms of prediction accuracy
since it has a lower value.

# using the trained model to make ‘y_predict’ on 
# new input features from the test set
y_predict = lr_model.predict(X_test)
# computing and printing the performance metrics
mse = mean_squared_error(y_test, y_predict)
print("Mean Squared Error (MSE):", mse)

Figure 8.23 Output showing the mean squared error (MSE) of the
linear regression model.

8.2.7.4 Coefficient of determination
The following code snippet calculates the Coefficient of Determination (R2)
value and the resulting value is 0.8935163320163657, as shown in the
subsequent output in Figure 8.24. This means that the model can better
explain the variability in the dependent variable.

print('R-squared:', r2_score(y_test, predictions))

Figure 8.24 Output showing the R-squared value of the linear
regression model.

8.3 Case study 3: Clustering problem
This case study focuses on the Clustering Problem, which aims to uncover
and organize unlabeled data into distinct groups based on inherent
similarities or patterns. As previously stated, unlike classification or
regression problems where data points already have assigned labels,
clustering algorithms must categorize unlabeled data into groups (i.e.,



clusters). The following subsections outline the steps in developing a
clustering model using the given dataset.

8.3.1 Problem definition
The clustering problem in this case study focuses on customer segmentation
in malls and shopping complexes. Malls and shopping complexes often
compete with each other to increase their customer base in order to increase
profit. Segmenting customers proves challenging due to the complex nature
of customer behavior, variability in individual preferences, lack of clear
understanding of the target audience, and ineffective segmentation criteria.
These complexities may lead to datasets with quality issues and potential
biases. Achieving effective customer segmentation demands a sophisticated
approach covering advanced data handling, robust validation, and domain
expertise to navigate these challenges.

8.3.1.1 Description of the dataset
The dataset used in this case study is known as the "Mall Customer
Segmentation," a popular choice for developing a model for customer
segmentation. It is publicly available for download from the Kaggle data
science repository (https://www.kaggle.com/code/listonlt/mall-customers-
segmentation-k-means-clustering). The dataset contains five features and
200 samples (i.e., data points) representing individual customers. The
features include:

CustomerID: Unique identifier for each customer
Gender: Male or Female
Age: In years (range: 18–70)
Annual Income: In thousands of dollars (range: 15–150)
Spending Score: Reflects customer spending habits (range: 1–100).

https://www.kaggle.com/code/listonlt/mall-customers-segmentation-k-means-clustering


8.3.2 Loading libraries
The following code snippet imports the necessary libraries for this specific
case study.

# Data manipulation libraries
import pandas as pd
import numpy as np
# Data visualization libraries (plotly for interactive graphs)
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
# Importing sklearn library to use K-Mean algorithm
from sklearn.cluster import KMeans
# Suppresses warnings of type FutureWarning
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)

8.3.3 Loading the dataset
Once the essential libraries are imported, the subsequent step involves
loading the dataset file (i.e., mall_customers.csv) utilizing the ‘read_csv’
function within the pandas library. The following code snippet loads the
dataset, and Figure 8.25 displays the output, showing five randomly
sampled records using the ‘customer_data.sample(5)’ function in pandas.

Figure 8.25 Displaying five data samples.

 customer_data = pd.read_csv("Mall_Customers.csv")
customer_data.sample(5)



8.3.4 Renaming column names
The dataset used in this case study contains columns with spaces in their
names that need to be renamed for clean and efficient data handling. Spaces
in column names can cause issues accessing them using dot notation (e.g.,
dataframe.Spending Score). Additionally, short and descriptive names make
the code easier to read and understand, improve the clarity of visualizations,
and reduce typo possibilities. The following code snippet renames the
column ‘Spending Score (1-100)’ to ‘Spending_Score’ and the column
‘Annual Income (k$)’ to ‘Annual_Income’.

customer_data.rename (columns = {
   'Spending Score (1-100)':'Spending_Score',
   'Annual Income (k$)': 'Annual_Income'},
   inplace=True)

8.3.5 Data summary
As demonstrated earlier, the ‘info()’ method in the following code snippet
provides essential data summary details. Figure 8.26 showcases the output
of the ‘customer_data.info()’ command statement.

customer_data.info()



Figure 8.26 Data summary.

8.3.6 Dropping less informative features
In this case study, the CustomerID column has to be dropped as it is
redundant and non-predictive and does not contribute to understanding the
target variable. Eliminating it reduces noise, mitigates overfitting risks, and
streamlines computational efficiency during model training and prediction.
The ‘CustomerID’ in the dataset is dropped using the following code
snippet.

customer_data.drop("CustomerID", axis=1, inplace=True)

8.3.6.1 Descriptive statistics
The following code snippet displays the output of the
‘customer_data.describe()’ command statement, as presented in Figure
8.27.

customer_data.describe()



Figure 8.27 Descriptive statistics.

Additionally, the following code snippet aims to ascertain whether the
characteristics of the ‘Gender’ feature impact a customer’s spending
behavior. The ‘Gender’ feature is used as it is the only categorical feature in
the dataset. The output of the code is displayed in Figure 8.28.

# seeks to answer whether gender influences spending
pd.pivot_table(customer_data,index=["Gender"], values=
["Spending_Score"], aggfunc=["count","sum","max","mean"])

Figure 8.28 Relationship between gender spending habit.

8.3.6.2 Data visualization
The following code snippet generates a histogram illustrating the
relationship between the categorical feature (i.e., ‘Gender’) and the total
number of samples. The resulting output is presented in Figure 8.29.



sns.countplot(x=customer_data["Gender"], data= customer_data)

Figure 8.29 Relationship between 'Gender' and the total number
of samples.

Moreover, the following code snippet creates three subplots, as displayed
in Figure 8.30, each containing a distribution plot for each numerical
feature in the dataset. This helps in showing the spread of data and detecting
outliers by considering deviations from the mean. Note that the data is
skewed if the graph leans to one side. The graph’s "peakedness" reflects
how concentrated the data is around the center. Points far away from the



central tendency (mean or median) on the tails of the distribution are
potential outliers.

# create a single figure with multiple axes to fit the graphs
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
sns.histplot(customer_data["Spending_Score"], kde=True, 
ax=axs[0])
axs[0].set_title('Spending Score Distribution')
sns.histplot(customer_data["Annual_Income"], kde=True, 
ax=axs[1])
axs[1].set_title('Annual Income Distribution')
sns.histplot(customer_data["Age"], kde=True, ax=axs[2])
axs[2].set_title('Age Distribution')
# Adjust the padding between and around the subplots 
plt.tight_layout() 

Figure 8.30 Distribution plots for numerical features.

Furthermore, the following code snippet generates a scatter plot,
illustrating the relationship between the ‘Age’ and ‘Spending_Score’
features. Observations on the scatterplot in Figure 8.31 suggest a weak
correlation between these two features, as represented by data points
scattered randomly across the plot without forming a clear pattern or trend.
This inference is further illustrated by the correlation matrix depicted in
Figure 8.32.



Figure 8.31 Distribution plots for numerical features.

plt.figure(figsize=(10,5))
sns.scatterplot(x=customer_data["Age"],y=customer_data["Spendin
g_Score"])



Figure 8.32 Correlation matrix.

Also, the correlation between the features can further be visualized in the
correlation matrix. The following code snippet plots the correlation matrix
to visualize the relationships among the numerical features. The matrix
provides a more quantified perspective on the relationship between ‘Age’
and ‘Spending_Score’, reinforcing the observations made from the scatter
plot. For instance, upon examining the correlation value of ‘Age’ and
‘Spending_Score’, it can be noted that a correlation value of -0.33 between
these two features suggests a slight negative correlation.



corr = customer_data.drop("Gender", axis=1).corr()
sns.heatmap(corr, annot=True)
plt.show()

8.3.7 Feature transformation
Since the ‘Gender’ feature is categorical, it needs to be transformed into
numerical data before being used to train the model, as most machine
learning algorithms work best with numerical data. Therefore, the ‘Gender’
feature is converted from categories to numbers using one-hot encoding.
This technique assigns a unique binary code to each gender (i.e., [1, 0] for
‘male’ and [0, 1] for ‘female’). The following code snippet encodes gender
variables using one-hot encoding, and the output is presented in Figure
8.33.

 # Convert categorical variable(s), in our case Gender, into 
encoded 
# variables, dropping the first category to avoid 
multicolinearity
customer_data = pd.get_dummies(customer_data,drop_first=True)
customer_data.sample(4)

Figure 8.33 Encoding of the gender feature.



8.3.8 Performing clustering using K-means
algorithm
In this case, the K-means clustering algorithm was chosen for its simplicity.
Before conducting the clustering process, the elbow method was utilized to
determine the optimal number of clusters (k). The following code snippet
illustrates the application of the elbow method to select the most suitable
number of clusters. Figure 8.34 showcases the ideal cluster quantity (6
clusters) identified through the elbow method. Note that the elbow method
identifies the optimal number of clusters at the point where the graph forms
an elbow and maintains consistency.



Figure 8.34 The optimal number of clusters using the elbow
method.

cluster_range = range(1, 25)
inertia_values = 
for k in cluster_range:
  cluster_model = KMeans(n_clusters=k)
  cluster_model.fit(customer_data)
  cluster_predictions = cluster_model.predict(customer_data)
  inertia_values.append(cluster_model.inertia_)
plt.plot(cluster_range, inertia_values)
plt.xlabel('Number of Clusters')
plt.ylabel('Sum of Squared Distances')
plt.show()

Given the optimal number of clusters generated by the elbow method, the
following code snippet performs clustering using the K-means algorithm
with the derived optimal number of clusters, which is 6.

final_model=KMeans(6)
final_model.fit(customer_data)
prediction=final_model.predict(customer_data)
#Append the prediction
customer_data["GROUP"] = prediction
print("Groups Assigned : \n")

The following code snippet renames the group names from numbers to
letters for easier readability and visualization. In addition, the code snippet
assigns a cluster value to each record in the dataset, simplifying the process
of allocating data samples to their respective clusters among the six
identified clusters (0 to 5).

# Define a mapping from numbers to letters
group_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
# Apply the mapping to the 'GROUP' column
customer_data['GROUP'] = customer_data['GROUP'].map(group_dict)

The following code snippet computes the mean of each cluster, as
illustrated in Figure 8.35.



Figure 8.35 The mean of each cluster.

data_mean = customer_data.drop("Gender_Male", 
axis=1).groupby(['GROUP'])
data_mean.mean()

The mean values of the identified clusters reveal distinct customer profiles,
providing insights that are valuable for tailoring targeted marketing
approaches, as described in the following:

Group A, characterized by an average age of 32.69 years, an average
annual income of $86.53k, and a high spending score of 82.12,
represents middle-aged individuals with high income and spending
capacity, suggesting they may be the primary target for luxury goods.
Group B, with younger demographics and moderate income and
spending tendencies (average age: 27.00 years, average annual
income: $56.65k, spending score: 49.13), could be interested in trendy
or affordable products.
Group C, comprising older individuals with moderate income and
spending scores (average age: 56.16 years, average annual income:



$53.38k, spending score: 49.09), may respond well to marketing
strategies emphasizing value-oriented products.
Group D, exhibiting middle-aged demographics with high income but
lower spending scores (average age: 41.68 years, average annual
income: $88.22k, spending score: 17.28), might prefer cautious
spending or saving.
Group E, with an average age of 44.14 years, an average annual
income of $25.14k, and a spending score of 19.52, consists of older
individuals with lower income and spending scores, indicating a
preference for discounted or value-oriented products.
Group F, representing younger demographics with lower income but
high spending scores (average age: 25.27 years, average annual
income: $25.72k, spending score: 79.36), may be inclined toward
trendy or impulse purchases.

8.3.9 Cluster visualization
For visualization purposes, the Plotly library displays the data samples in
their respective clusters (using the command ‘px.scatter()’). Since k-means
uses all data features, visualizing high dimensions is difficult. To address
this, a scatter plot can be created to focus on just two features (2D) or three
features (3D). Thus, the scatter plots of 2D are used as depicted in Figures
8.36 and 8.37 to display the ‘Annual_Income‘ vs ‘Spending_Score’ and
‘Age’ vs ‘Spending_Score’ respectively. The following code snippet
generates a scatter plot of ‘Annual_Income’ vs ‘Spending_Score’ and ‘Age’
vs ‘Spending_Score.’



Figure 8.36 Scatter plot of ‘Annual_Income’ vs ‘Spending_Score’.

Figure 8.37 Scatter plot of ‘Age’ vs ‘Spending_Score’.

 fig = px.scatter(customer_data, x='Annual_Income', 



y='Spending_Score',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score', 
width=700, height=500)
fig = px.scatter(customer_data, x='Age', 
y='Spending_Score',color='GROUP')
fig.update_layout(title='Spending_score vs Age', width=700, 
height=500)

Additionally, the distribution of the six clusters can be distinctly visualized
in 3D using the ‘px.scatter_3d()’ command illustrated in the following code
snippet, with the corresponding 3D visualization depicted in Figure 8.38.

Figure 8.38 The 3D view of the clusters.

fig = px.scatter_3d(customer_data, x='Annual_Income', 
y='Spending_Score', z='Age',color='GROUP')
fig.update_layout(title='Annual_Income vs Spending_Score vs 
Age', autosize=False,width=1000, height=800)

Furthermore, it is important to visualize the gender distribution in each
cluster to provide the number of male and female customers in each
customer segment. The following code snippet generates the gender
distribution as depicted in Figure 8.39.



Figure 8.39 Distribution of gender in each cluster.

 # Create a copy of the customer_data and replace encoded 
values with 
# original ones
data_copy = customer_data.copy()
data_copy['Gender_Male'] = data_copy['Gender_Male'].replace({0: 
'Female', 1: 'Male'})
plt.figure(figsize=(10, 6))
sns.countplot(x='GROUP', hue='Gender_Male', data=data_copy)
plt.title('Distribution of Groups by Gender')
plt.xlabel('Group')
plt.ylabel('Count')
plt.show()

8.3.10 Model evaluation
The silhouette score using the ‘silhouette_score()’ method is used to
evaluate the quality of the clustering model. It measures how similar an
object is to its own cluster (i.e., cohesion) compared to other clusters (i.e.,
separation). The silhouette score close to 1 implies well-separated clusters,
near 0 indicates overlap, while close to -1 suggests misplacement of points.
The following code snippet calculates the silhouette score in this case study,



with the corresponding output value of 0.45206493204632353. This value
suggests a moderate/reasonable separation between clusters, indicating that
the data points are reasonably well-placed within their clusters but still have
some degree of overlap with points in neighboring clusters.

from sklearn.metrics import silhoutte_score
silhouette_score_value = silhouette_score(data.drop("GROUP", 
axis=1), final_model.labels_)
print("Silhouette Score:", silhouette_score_value)

8.3.11 Case study 4: Association rules
This case study focuses on the association rule problem, which aims to
uncover meaningful insights into consumer behavior and product
relationship. It illustrates the formulation of rules based on product
transactions recorded within the dataset. The following subsections outline
the steps in developing association rules using a given dataset.

8.3.12 Problem definition
Discovering customer purchase patterns within transactional data presents a
significant challenge due to the complexity of identifying associations and
relationships among items bought together frequently. Understanding the
interplay of product affinities, seasonal trends, and customer preferences is
crucial for optimizing product placement, enhancing cross-selling
opportunities, and tailoring marketing strategies. However, the sheer
volume and diversity of transactional data and the need to extract
meaningful insights amid noise and variability make it difficult to uncover
actionable patterns efficiently. Addressing this challenge requires
sophisticated techniques such as Market Basket Analysis, which aims to
identify frequent itemsets and generate association rules to guide strategic
decision-making.



8.3.12.1 Description of the dataset
The dataset utilized in this case study is the Grocery Store dataset, a widely
recognized and frequently employed dataset designed explicitly for
association rule mining tasks. The Grocery Store dataset is a collection of
customer transactions stored in a tabular format. Each row represents a
single purchase, and columns include identifiers like customer ID and
products. This data allows for analyzing purchase patterns by identifying
frequently purchased combinations of items. It helps businesses understand
customer behavior, optimize product placement, develop targeted
promotions, and ultimately increase sales. The Groceries Dataset for Market
Basket Analysis is publicly available for download from the Kaggle data
science repository
(https://www.kaggle.com/datasets/shazadudwadia/supermarket). The
dataset contains 20 transactions and 11 items (i.e., ‘Products’) including
Jam, Maggi, Sugar, Coffee, Coke, Tea, Biscuit, Bournvita, Bread,
Cornflakes, and Milk.

8.3.13 Loading libraries
The following code snippet imports the necessary libraries for this case
study.

# Import necessary libraries
import pandas as pd
import warnings
from mlxtend.preprocessing import TransactionEncoder as TE
from mlxtend.frequent_patterns import apriori, 
association_rules
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings("ignore", category=DeprecationWarning)

https://www.kaggle.com/datasets/shazadudwadia/supermarket


8.3.14 Loading dataset
Once the essential libraries are imported, the subsequent step involves
loading the dataset file (i.e., GroceryStoreDataSet.csv) utilizing the
‘read_csv’ function within the pandas library. The following code snippet
loads the dataset, and Figure 8.41 displays the first five transactions using
the ‘data.head(5)’ function in panda.

transaction_data = pd.read_csv("GroceryStoreDataSet.csv", 
header=None)
transaction_data.columns = ["Products"]
transaction_data.head(5)

Figure 8.40 Output showing the Silhouette score of the clustering
model.

Figure 8.41 Displaying the first five products.



Figure 8.42 Output displaying the number of transactions and
unique items in the dataset.

8.3.15 Data summary
Displaying a data summary typically involves examining key statistics and
characteristics of the dataset. This includes information such as the number
of transactions, the total number of unique items or products available in the
dataset, and the average number of items per transaction. Additionally,
summary statistics might include the most frequently occurring items and
measures of item popularity or support. For demonstration, the following
code snippet outputs the number of transactions and unique items in the
dataset.

# Fetch the number of transactions
num_transactions = len(transaction_data)
print(f"Number of transactions: {num_transactions}")
# Fetch the number of unique items
num_unique_items = 
transaction_data['Products'].str.split(',').explode().nunique()
print(f"Number of unique items: {num_unique_items}")

8.4 Feature transformation
Feature transformation is done to convert the transactional data into a
suitable format for analysis. This is achieved by transforming the dataset
into a transactional format where each row represents a unique transaction
and each column represents a distinct item or product. This transformation
is achieved through one-hot encoding, where the values of ‘1’ and ‘0’
indicate the presence and absence of an item in a transaction, respectively.
Additionally, feature transformation may involve filtering out low-support
items or rare items to reduce noise in the dataset and improve the efficiency
of the association rule mining algorithms. Feature transformation aims to
prepare the dataset for subsequent analysis and rule generation, enabling the



discovery of meaningful associations between items in customer
transactions. The following code snippet splits, computes one-hot encoding
and displays the output shown in Figure 8.43.

Figure 8.43 The output of one-hot encoding.

 # Split the products in each transaction into separate items
transactions = transaction_data['Products'].str.split(',')
encoder = TE()
encoded_transactions = encoder.fit_transform(transactions)
encoded_data = pd.DataFrame(encoded_transactions.astype(int), 
columns=encoder.columns_)
encoded_data.head()

8.4.1 Data visualization
Data visualization of unique items within the dataset typically involves
creating bar charts or histograms to display the frequency of each item
occurrence in the transactions. It provides a clear overview of the most
commonly purchased items and their relative popularity among customers.
The following code snippet computes the number of unique items in the
dataset that occurred in the transaction and displays the resulting output in
Figure 8.44.



Figure 8.44 Frequency of items in the transactions.

 # Bar plot of the product counts
product_counts = encoded_data.sum()
plt.figure(figsize=(12, 8))
sns.barplot(x=product_counts.index, y=product_counts.values, 
palette='viridis')
plt.title('Product Counts')
plt.xlabel('Products')
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show()

8.4.2 Model development
In this case study, the Apriori algorithm is utilized to uncover frequent
itemsets within the transactional datasets. It operates by iteratively
generating candidate itemsets and pruning those that fall below a
predetermined minimum support threshold. Before rule generation, the



following code snippet produces combinations of itemsets ranging from
single items to the maximum number appearing in transactions, as shown in
Figure 8.45. Note that, for the sake of simplicity, several combinations of
itemsets are omitted.

Figure 8.45 Combination of items in the dataset.

frequent_itemsets = apriori(encoded_data, min_support=0.1, 
use_colnames=True, verbose=1)
frequent_itemsets['length'] = 
frequent_itemsets['itemsets'].apply(lambda x: len(x))
frequent_itemsets = frequent_itemsets.sort_values(by='support', 
ascending=False)
# Sort and select the top 15 itemsets. Adjust this number to 
control how 
# many itemsets are displayed
top_frequent_itemsets = frequent_itemsets.head(15)
plt.figure(figsize=(12, 8))
plt.barh(y=range(len(top_frequent_itemsets)), width= 
top_frequent_itemsets ['support'], color='skyblue')
plt.yticks(range(len(top_frequent_itemsets)), 
top_frequent_itemsets ['itemsets'])
plt.gca().invert_yaxis() # labels read top-to-bottom
plt.xlabel('Support')
plt.ylabel('Itemsets')
plt.title('Support of Frequent Itemsets')
plt.show()



Once frequent itemsets are identified, association rules are generated based
on these itemsets. The following code snippet computes the rules from the
frequent itemset with a minimum threshold of 0.85. Then, the candidate
rules are generated by combining antecedents with consequents derived
from frequent itemsets. Note that there is no universally predefined
minimum threshold for the ‘association_rules()’ function. Setting the
threshold too low can result in many meaningless frequent itemsets due to
random co-occurrences, and a higher threshold will identify only the most
frequent co-occurrences.

rules = association_rules(frequent_itemsets, 
metric="confidence", min_threshold=0.85)
rules = rules[['antecedents', 'consequents', 'antecedent 
support', 'consequent support', 'support', 'confidence', 
'lift']]
rules

Figure 8.46 displays the resultant association rules in a tabular format,
where each row represents a rule and columns represent various metrics
such as support, confidence, and lift. This allows for a concise overview of
the rules and their associated metrics.



Figure 8.46 Resultant association rules in tabular form.

8.5 Summary
This chapter explored machine learning techniques through four distinct
practical case studies. It details the step-by-step practical process by
employing Python programming language and a coding environment set up
with Jupyter Notebook or Google Colab. In Case Study 1, the focus was on
a classification problem where the objective was to detect diabetes using a
machine learning classifier. This involves classifying data samples into
positive or negative classes. Moving on to Case Study 2, the chapter
jumped into a Regression Problem, using an advertising dataset to predict
sales based on advertising budgets. This case study illustrated the
relationship between advertising and sales to demonstrate the development
of a prediction model to forecast sales outcomes. Case Study 3 shifted the
focus to a clustering problem to organize unlabeled data into distinct groups



based on inherent similarities or patterns. Unlike classification or regression
problems, clustering algorithms categorize unlabeled data into clusters, and
the chapter outlined the steps involved in developing a clustering model
using the provided dataset. Finally, Case Study 4 explored association rules
to uncover meaningful insights into consumer behavior and product
relationships. This case study demonstrated the formulation of rules based
on product transactions recorded within the dataset, providing a step-by-
step guide to developing association rules and gaining insights into
customer purchase patterns. Thus, through these practical examples, the
chapter aimed to provide hands-on skills in applying various machine-
learning techniques to real-world datasets, covering classification,
regression, clustering, and association rule mining. Each case study offers
valuable insights and practical guidance for understanding and
implementing machine-learning models.



Exercises
1. For the classification problem in Case Study 1, analyze the dataset used for detecting

diabetes and identify the key features that contribute most to the classification task.
2. In the regression problem in Case Study 2, experiment with different regression

algorithms such as K-NN regression and decision tree regression, and compare their
performance in predicting sales based on advertising budgets.

3. For the clustering problem in Case Study 3, apply various clustering algorithms such as
agglomerative clustering and DBSCAN to the dataset and evaluate their effectiveness in
organizing unlabeled data into distinct groups.

4. In the association rules problem in Case Study 4, explore different support and
confidence thresholds for generating association rules and analyze how they impact the
number and quality of rules discovered.

5. Implement feature engineering techniques such as feature scaling, dimensionality
reduction (e.g., PCA), and feature selection on the dataset used in Case Study 1, and
evaluate their effects on classification performance.

6. Experiment with different cross-validation settings on the dataset used in Case Study 1
and assess the impact on classification performance.

7. Experiment with different clustering techniques, such as Fuzzy-C-Means-Clustering and
Gaussian mixture on the dataset used in Case Study 3, and compare their performance
with the k-means clustering algorithm.

8. Investigate the use of association rule mining algorithms such as FP-growth and Eclat in
Case Study 4, and analyze their ability to generate high-quality rules.

9. Use a publicly accessible dataset for a classification task. Experiment with a different
classification algorithm, such as SVM, random forest, and naive Bayes, to perform cross-
validation and compare their performance using different metrics.

10. Perform market basket analysis on a publicly available dataset similar to the one used in
Case Study 4, and apply the Apriori algorithm to uncover interesting patterns of item co-
occurrence in customer purchases. Propose actionable insights for improving product
recommendations or marketing strategies based on the discovered rules.

OceanofPDF.com

https://oceanofpdf.com/


Appendix
Machine Learning Resources



Python
Programming 1. Corey Schafer: https://www.youtube.com/user/sch

2. Sentdex: https://www.youtube.com/user/sentdex
3. Edureka: https://www.youtube.com/playlist?

list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9
4. Python Machine Learning Tutorial:

https://www.youtube.com/watch?v=7eh4d6sabA0
5. Machine Learning With Python:

https://www.youtube.com/watch?v=c8W7dRPdIP
6. Codecademy: Codecademy's Python Course is an 

and beginner-friendly platform. It provides hands-
exercises to reinforce concepts.

7. SoloLearn's Python Course is a mobile-friendly pl
community aspect, allowing you to learn and pract
on the go.

8. Real Python provides tutorials, articles, and other
that cater to developers at various skill levels. It co
fundamentals and advanced topics.

9. The official Python website itself is an excellent re
provides documentation, tutorials, and links to var
resources.

Machine
Learning 1. Machine Learning with Maths, Statistics, and Line

by Andrew NG applied AI: https://www.youtube.c
v=PPLop4L2eGk&list=PLLssT5z_DsK-
h9vYZkQkYNWcItqhlRJLN

Resource Source

https://www.youtube.com/user/schafer5
https://www.youtube.com/user/sentdex
https://www.youtube.com/playlist?list=PL9ooVrP1hQOHUfd-g8GUpKI3hHOwM_9Dn
https://www.youtube.com/watch?v=7eh4d6sabA0
https://www.youtube.com/watch?v=c8W7dRPdIPE
https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN


2. Machine Learning by Statquest with Josh Starmer
https://www.youtube.com/user/joshstarmer

3. Machine Learning Stanford University:
https://www.youtube.com/watch?v=jGwO_UgTS7

4. Introduction to Machine Learning Udacity:
https://www.udacity.com/course/aws-machine-lear
engineer-nanodegree--nd189

5. Introduction to Machine Learning Yale University
https://www.cs.cmu.edu/link/research-notebook-di
machine-learning

6. Introduction to Machine Learning Berkeley Unive
a. https://ml.berkeley.edu/
b. https://launchpad.berkeley.edu/

7. Google Python Class:
https://developers.google.com/edu/python/

8. Python HOWTOs, invaluable for learning idioms:
https://docs.python.org/2/howto/index.html

9. Introduction to Artificial Intelligence (AI) by Micr
is a comprehensive program covering AI and mach
concepts.

10. Fast.ai provides a practical and top-down approach
machine learning. They offer free courses that are 
regarded for their effectiveness.

Machine
Learning
Libraries
Guides

1. Python Standard Library Reference:
https://docs.python.org/2/library/index.html

Resource Source

https://www.youtube.com/user/joshstarmer
https://www.youtube.com/watch?v=jGwO_UgTS7I
https://www.udacity.com/course/aws-machine-learning-engineer-nanodegree--nd189
https://www.cs.cmu.edu/link/research-notebook-discipline-machine-learning
https://ml.berkeley.edu/
https://launchpad.berkeley.edu/
https://developers.google.com/edu/python/
https://docs.python.org/2/howto/index.html
https://www.fast.ai/
https://docs.python.org/2/library/index.html


2. SciPy Lecture Notes: http://www.scipy-lectures.or
3. NumPy User Guide: http://docs.scipy.org/doc/num
4. Matplotlib gallery of plot types and sample code:

http://matplotlib.org/gallery.html
5. Matplotlib Beginners Guide:

http://matplotlib.org/users/beginner.html
6. Matplotlib API Reference: http://matplotlib.org/ap
7. Pandas documentation page (user guide). Note the

contents on the left-hand side, it is very extensive:
http://pandas.pydata.org/pandas-docs/stable/

8. Pandas cookbook provides many short and sweet e
http://pandas.pydata.org/pandas-docs/stable/cookb

9. Pandas API Reference: http://pandas.pydata.org/pa
docs/stable/api.html

10. The scikit-learn API Reference: http://scikit-
learn.org/stable/modules/classes.html

11. The scikit-learn User Guide: http://scikit-
learn.org/stable/user_guide.html

12. The scikit-learn Example Gallery: http://scikit-
learn.org/stable/auto_examples/index.htm

Machine
Learning
Projects

Machine Learning Projects: https://www.youtube.com/wa
v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CC

Machine
Learning
Blogs

1. Towards Data Science: https://towardsdatascience
2. Medium Machine Learning:

https://medium.com/topic/machine-learning

Resource Source

http://www.scipy-lectures.org/
http://docs.scipy.org/doc/numpy/user/
http://matplotlib.org/gallery.html
http://matplotlib.org/users/beginner.html
http://matplotlib.org/api/index.html
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/cookbook.html
http://pandas.pydata.org/pandas-docs/stable/api.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/
https://www.youtube.com/watch?v=5Txi0nHIe0o&list=PLZoTAELRMXVNUcr7osiU7CCm8hcaqSzGw
https://towardsdatascience.com/
https://medium.com/topic/machine-learning


3. Reddit: https://www.reddit.com/
4. Hackers News: https://news.ycombinator.com/
5. Explainable AI:

a. https://www.ibm.com/watson/explainable-ai
b. https://www.darpa.mil/program/explainable-a

intelligence
c. https://towardsdatascience.com/explainable-a

9a9af94931ff
d. https://www.weforum.org/agenda/2022/03/de

artificial-intelligence-for-privacy/
e. https://ora.ox.ac.uk/objects/uuid:2b379a39-2b

a97a-78632ddb9ede

Mathematics
for Machine
Learning

1. MIT Courseware Linear Algebra:
https://ocw.mit.edu/courses/18-06-linear-algebra-s

2. Calculus 3blue1brown:
https://www.3blue1brown.com/topics/calculus

3. Introduction to Probability The Science of Uncerta
https://www.edx.org/course/probability-the-scienc
uncertainty-and-data

4. Khan Academy offers a wide range of tutorials on
mathematics, including algebra, calculus, linear al
statistics. It provides a step-by-step approach suita
beginners.

5. edX provides online courses from universities wor
Courses such as “Essential Mathematics for Artific

Resource Source

https://www.reddit.com/
https://news.ycombinator.com/
https://www.ibm.com/watson/explainable-ai
https://www.darpa.mil/program/explainable-artificial-intelligence
https://towardsdatascience.com/explainable-ai-9a9af94931ff
https://www.weforum.org/agenda/2022/03/designing-artificial-intelligence-for-privacy/
https://ora.ox.ac.uk/objects/uuid:2b379a39-2bd9-43c1-a97a-78632ddb9ede
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://www.3blue1brown.com/topics/calculus
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data


Intelligence” by Microsoft on edX cover relevant t
6. Brilliant provides interactive courses in mathemati

science. The “Mathematics for Computer Science”
suitable for building a strong mathematical founda

7. Mathematics Stack Exchange is a community whe
ask questions and get answers related to mathemat
valuable resource for clarifying concepts.

8. Channels like Professor Leonard and PatrickJMT o
comprehensive tutorials on various mathematical t

9. Mathematics for Machine Learning by Marc Peter
A Aldo Faisal, and Cheng Soon Ong is a book spe
designed for those entering the field of machine le

Machine
Learning
Algorithms

Algorithm Design and Analysis Pennsylvania University:
https://repository.upenn.edu/sd3x/

Deep
Learning 1. Deep Learning Andrew Ng: https://www.youtube.

v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-
XTbcX1uRg2_u4xOEky0

2. CS231n - Convolutional Neural Networks for Visu
Recognition is a widely praised course by Stanford
It covers convolutional neural networks (CNNs) a
applications.

3. MIT OCW: Introduction to Deep Learning provide
notes and resources for learning deep learning con

4. PyTorch Tutorials on the official PyTorch website 
hands-on guides for learning deep learning using P

Resource Source

https://repository.upenn.edu/sd3x/
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0


popular deep learning framework.
5. TensorFlow Tutorials on the official TensorFlow w

practical guides for building deep learning models
TensorFlow.

6. Deep Learning (deeplearningbook.org) by Ian Goo
Yoshua Bengio, and Aaron Courville is a compreh
that covers the theoretical foundations of deep lear

OceanofPDF.com

Resource Source

https://oceanofpdf.com/


Index
Pages in italics refer to figures and pages in bold refer to tables.

A
activation functions 60–62, 74; hyperbolic tangent 61
advertising 175–177, 180–181, 203
AGI (Artificial General Intelligence) 152–160
algorithm design 146–147, 209
algorithms 3–8, 13, 65, 74, 79, 80, 94–95, 97, 104–105, 107–108, 118,

120, 121–123, 129, 130, 132, 143–147, 150, 158, 172
ANI (Artificial Narrow Intelligence) 152, 159
anomalies 7, 12, 60
APIs (Application Programming Interfaces) 106, 114, 123, 128
apriori algorithm 202, 206
artificial general intelligence 152–160
artificial intelligence 6–9, 10, 16, 145, 147–148, 150, 152, 208–209
artificial intelligence systems 139, 143
Artificial Narrow Intelligence, see ANI
ASI (Artificial Super Intelligence) 152, 159–160
association rule mining 97–98, 120, 205
association rules 5–6, 103, 126, 198, 203
AUC-ROC values 100



B
Bayes’ Theorem 51
Bernoulli distribution 54
bias and discrimination 142
bias term 61–62
biases 14, 74, 82, 92, 94, 107, 127, 129, 138, 141–143, 145–147, 149–

150, 157
big data 94, 120
binomial distribution 55
box plots 36–37, 40, 83, 87, 114, 169, 180

C
Caffe 122
categorical data 34, 40, 83, 87
Central Processing Unit (CPU) 133–134, 136
central tendency 33–34, 52, 73, 83, 87, 165, 170, 177, 188
Centroid for Cluster 70–71
centroids 65, 67–71
chatbots 2, 8–9, 11–13, 134, 142
Chebyshev distance 65, 67
class distribution 166–167
classes 3–4, 34, 63, 83, 92, 99–101, 162, 165, 174
classification 3, 97–98, 113, 114, 116, 118, 120, 121, 123, 126, 162, 184,

205
classification algorithms 3, 162, 172, 206
cloud computing 131, 135



cloud computing services 132, 135
clustering 5, 65, 83, 97–98, 105, 113, 114, 116, 118, 120, 121–123, 126,

184, 205
clustering algorithms 5, 65, 162, 184, 205
clusters 5, 60, 65, 67–71, 102–103, 184, 192–194, 196–198, 205
code 79, 105, 112–113, 122, 125, 128, 164, 186–187
code editors 112–113, 116, 117, 119, 121
code snippet 164, 169, 176, 180, 183, 193
computer science 7, 153, 156
computer vision 7, 9, 10, 79, 122, 158
conditional probability 50–51
conditional probability of event 50–51
confusion matrix 98, 172–173
continuous random variables 51–54, 56
convolutional 209
correlations 12, 140, 167, 175, 177, 190
cost 59, 82, 110, 113, 135–136

D
data 1, 7–8, 33–36, 38–41, 74, 76–88, 91–97, 106–107, 139–143, 148–

149, 166–167, 169, 171–172, 174–176, 180, 182, 186–188, 192–193,
196–202

data collection 76, 78, 81–82, 92–94, 140–141, 150
data curation 80, 93
data distribution 40, 62, 88
data labeling 80, 131
data mining 12, 25, 94



data points 5–6, 19, 35–39, 41, 52, 60, 65, 67–71, 83, 102–104, 177,
184–185

data preparation 76–77, 79, 80–94, 118
data preprocessing 76, 81, 88, 118, 122, 126, 169, 171, 180
data repositories 79, 93–94
data samples 3–4, 39, 71, 105, 141, 162, 194
data science 6–7, 13, 16, 19, 25, 53, 94, 208
data scientists 14, 79, 111
data sources 78, 93, 143–144
data standardization 171
data summary 165, 176–177, 186–187, 200
data transformation 83, 93, 163, 180, 182
data visualization 87, 126, 166, 177, 187, 201
dataset 5, 32–33, 35–41, 78–85, 87–88, 91–99, 101–102, 104–105, 128–

129, 130, 141, 163–167, 169–172, 175–177, 178, 180–182, 185–188,
198–202, 205

dataset features 169, 181
dataset file 164, 176, 185, 199
dataset splitting 95
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

5, 205
decision trees 4, 172
deep learning 8–9, 11, 16, 151, 154, 209
deep learning models 114, 123, 142, 209
deployment 106–110, 112, 114, 122, 125, 128–129, 131, 138, 143, 146,

148–149, 159
discrete random variables 51–54, 63



E
EDA (Exploratory Data Analysis) 87–88, 93, 116
eigenvalues 18, 30–32, 74
eigenvectors 18, 25, 30–32, 74
EOA (Evolutionary Optimization Algorithms) 104–106, 108–109
error term 45, 47–48
ethical challenges 146, 155
ethical frameworks 107, 143, 150
ethical issues 82, 108
Euclidean distance 60–61, 65, 68
Euclidean space 65–67
evaluation metrics 98, 108
events 48–51, 55, 124, 140

F
False Negative (FN) 98–99, 173
false positive 98–99, 173
feature extraction 92, 115
feature selection 63, 91, 93–94, 104, 115, 181, 205
forecasting 12, 101
functions 7, 53, 58–59, 86, 118, 143, 154, 158, 174, 176, 185, 199, 203

G
GA (Genetic Algorithms) 106, 121
Gaussian distribution 40, 56
Generative Pre-trained Transformer (GPT) 157



Genetic Algorithms (GA) 106, 121
GPUs (Graphics Processing Unit) 133–136
gradient 59–60, 105
gradient descent 59, 104–105

H
hyperparameter optimization 130, 137
hyperparameter tuning 115, 116, 120, 130

I
IDEs (Integrated Development Environments) 110–113, 117–119, 121,

122, 133, 136
income 186, 188, 194–196
independent variables 4, 45–47, 59, 102, 181, 183
inferential statistics 33, 39, 43
information theory 62
input features 3–4, 91, 171, 177, 179, 181
input variables 59
intelligence 7, 135, 152–156, 158–159
intelligent systems 121

J
JAX (Just Another X) 134
joblib 174
Jupyter Notebook 112–113, 135, 203



K
k-means 5, 194
k-means algorithm 192–193
Keras 114, 127, 130
kNN 114, 116, 132, 172
knowledge 1, 3, 12–13, 124, 152–153, 159

L
labeled data 4, 6, 8
large language models (LLMs) 157, 159
learning algorithm 3, 105
libraries 110–113, 114, 115, 116, 118, 120, 121–125, 127, 130, 136–137,

163, 174–176, 208
linear algebra 13, 18, 114, 123, 207, 209
LinearRegression 182
loading libraries 163, 175, 185, 199
loss function 64, 105

M
machine learning 1–33, 39–41, 49–51, 53–65, 73–74, 92–94, 108–109,

121–124, 126, 134–137, 139–142, 149–150, 207, 209
machine learning algorithms 3, 12, 18–19, 40, 72, 79, 80–81, 83–84, 87,

108, 114, 116, 123, 141–142
MAD (Mean Absolute Deviation) 37–39
MAE (Mean Absolute Error) 98, 101, 183
Manhattan distance 65–66, 69



mathematical function 51, 53, 60, 97
MATLAB 110–111, 115, 117, 123
matrices 18, 20–22, 25–26, 114
matrix 20–27, 29–30, 98, 115, 164, 173, 190
Mean Absolute Error, see MAE
Mean Percentage Error (MPE) 183
mean squared error, see MSE
mean values 42–43, 102, 193
measures of dispersion 34, 38, 73
median 34, 36, 39, 83–84, 88, 167, 170–171, 188
MLOps 107–108
model 1–4, 6, 33, 58–60, 76, 80–81, 91–92, 95–102, 104–106, 108–109,

126, 127, 129, 130, 132–134, 139–143, 148–150, 157, 171–175, 181–
185, 193

model deployment 106, 108, 127
model equation 183
modeling phases 77, 180
MPE (Mean Percentage Error) 183
MSE (Mean Squared Error) 98, 101–102, 183–184
multivariate analysis 89, 91
multivariate linear regression 47, 182

N
natural language processing 7–9, 10, 115, 120, 121, 152
neural networks 8, 61, 64, 97, 114, 120–121, 122, 127, 154, 156
NLP (Natural language processing) 7–9, 10, 16, 79, 115, 120, 121, 123,

152



noise 5, 81, 141, 186, 198, 200
normal distribution 40–43, 56–57
normalization 33, 50, 84–85, 93, 182

O
object recognition 114
one-hot encoding 84, 191, 200
open-source version control system 129, 133
optimization 104, 114, 120, 126, 129–131, 151, 154, 156
optimization algorithms 104, 113
outcomes 48–51, 53–54, 56–57, 59–60, 63, 77, 98–99, 142, 143, 158–

159, 163, 166–167, 171, 174
outliers 5, 33–34, 36, 39, 81, 83, 85, 88, 166–169, 174, 180

P
parameters 48, 65, 104–106, 140–141
PCA (principal component analysis) 74, 91–94, 205
PDF (probability density functions) 53–54, 57
performance metrics 98–102, 126, 183
Poisson distributions 54–55
precision 82, 98–100, 172–173
predict 3–4, 47–48, 72, 97, 102, 104, 173–175, 183–184
pre-trained models 79, 114, 120, 122, 126, 128, 136
principal component analysis, see PCA
privacy 14, 82, 107–108, 139–140, 142, 143, 146–147, 149–151
probability 13, 48–51, 53–56, 72, 172, 209
probability and statistics 13



probability density function 52–54, 57
probability distribution 49, 51, 53–54, 57, 62–64
probability mass function 52–55
probability theory 48–49, 51, 53
problem domains 12, 77–78
programming 113, 116, 117, 121, 124, 153, 207
programming code editors 113, 121, 122
programming languages 110–113, 117, 121, 123–126, 136
programming libraries 115, 116, 121–123
Python 110–113, 117, 123, 131, 163, 165, 207
Python code editors and IDEs 111–113
Python libraries 113–115
Python programming 113, 131
Python tools 111
PyTorch 110, 114, 127, 134, 209

Q
quartiles 36–37, 73, 167

R
R-Square 183
RAM (Random Access Memory) 133–134, 136
Random Access Memory, see RAM
random variables 49, 51–57, 62–63
recommendation systems 2, 12, 61, 77–78, 123
regression 3–4, 33, 56, 97–98, 113, 114, 116, 118, 120, 121–123, 126,

175, 205



regression algorithms 4, 162, 180, 182, 205
regression models 101, 116, 175
reinforcement learning 3, 6, 158
RMSE (Root Mean Squared Error) 98, 102, 183
ROC curve 100
Root Mean Squared Error, see RMSE
rows 19–22, 24, 27, 87, 165, 175–176, 198, 200, 203

S
scalability 118, 122, 123, 125, 134, 136, 154, 156
scatter plots 87, 114, 167, 169, 177, 179–180, 190, 194, 195
semi-structured data 78
semi-supervised learning 3, 6
sensitivity 98–101, 172
SGD (Stochastic Gradient Descent) 104–105
sigmoid function 60
silhouette score 102–103, 108, 197–199
slope 45–47, 59–60, 105, 177
SMOTE (Synthetic Minority Oversampling Technique) 93
software tools 110, 132, 136
standard deviation 38–42, 52–53, 57, 85, 87, 174
statistics 13, 32–33, 40, 50–51, 53, 78, 127, 165, 207, 209
Stochastic Gradient Descent, see SGD
structured data 78, 175
supervised learning 3, 6, 80
support vector machine 4, 121, 132, 172



T
TensorFlow 110, 114, 120, 127, 134, 209
testing data 106
testing sets 95, 97–98, 104, 108, 171
tokenization 120
TPUs (Tensor Processing Unit) 134–136
training 6, 95–97, 104–106, 108, 114, 123, 128, 134–135, 153–154, 171–

172, 174, 182
training and testing data 106
training and testing sets 95, 97, 104, 108, 171
training parameters 104, 127
training set 95–97, 104, 171–172, 182
transactions 103–104, 198–202
true negative 98–99, 173
true positive (TP) 98–99, 173

U
uniform distribution 56–57
unlabeled data 6, 65, 184, 205
unseen data 3, 96, 98, 104, 108, 174
unstructured data 8, 78, 154
unsupervised learning 3–5, 122

V
vectors 18–21, 59
visualization 39, 79, 87, 112, 114, 117, 126, 127, 186, 193, 196



visualization techniques 33, 83
visualization tools 122

W
weights 39, 61–62, 74, 127, 129, 163

Z
zscore 171, 174

OceanofPDF.com

https://oceanofpdf.com/

	Cover Page
	Half Title page
	Title Page
	Copyright Page
	Contents
	About the authors
	Preface
	Acknowledgments
	Glossary
	1 Fundamentals of machine learning
	1.1 What is machine learning?
	1.2 A brief history of machine learning
	1.3 Types of machine learning algorithms
	1.3.1 Supervised learning
	1.3.2 Unsupervised learning
	1.3.3 Semi-supervised learning
	1.3.4 Reinforcement learning

	1.4 Relationship between machine learning and other computer science disciplines
	1.4.1 Machine learning and artificial intelligence
	1.4.2 Machine learning and data science
	1.4.3 Machine learning and traditional programming
	1.4.4 Machine learning and deep learning
	1.4.5 Machine learning and natural language processing
	1.4.6 Machine learning and computer vision
	1.4.7 Machine learning and generative AI

	1.5 The importance of machine learning
	1.6 When do we need machine learning?
	1.7 Machine learning skills
	1.7.1 Essential technical skills for machine learning professionals
	1.7.2 Essential soft skills for machine learning professionals

	1.8 What do machine learning professionals do?
	1.9 Real-world applications of machine learning
	1.10 Machine learning and ethical concerns
	1.11 Summary
	Further Reading

	2 Mathematics for machine learning
	2.1 Linear algebra
	2.1.1 Scalars
	2.1.2 Vectors
	2.1.3 Matrix

	2.2 Statistics concepts
	2.2.1 Use of statistics in machine learning
	2.2.2 Types of statistics
	2.2.3 Types of data
	2.2.4 Data distribution
	2.2.5 Applied statistical inference

	2.3 Probability theory
	2.3.1 Sample spaces and events
	2.3.2 Probability
	2.3.3 Probability measures
	2.3.4 Conditional probability
	2.3.5 Bayes’ theorem
	2.3.6 Random variables
	2.3.7 Expectation
	2.3.8 Variance
	2.3.9 Standard deviation

	2.4 Calculus
	2.4.1 Differentiation
	2.4.2 Integration
	2.4.3 Gradient
	2.4.4 Linear function
	2.4.5 Quadratic function
	2.4.6 Sigmoid function

	2.5 Geometry and trigonometry
	2.5.1 Geometry in data representation
	2.5.2 Trigonometric geometry in model optimization

	2.6 Information theory
	2.6.1 Entropy and information content
	2.6.2 Mutual information and feature selection
	2.6.3 Cross-entropy and model evaluation

	2.7 Clustering
	2.7.1 K-Means clustering algorithm

	2.8 Summary
	Further Reading

	3 Data preparation
	3.1 Overview of machine learning process
	3.2 Business problem identification
	3.3 Success criteria definition
	3.4 Data collection
	3.4.1 Nature of data
	3.4.2 Data sources
	3.4.3 Data curation
	3.4.4 Data labeling
	3.4.5 Ethical considerations in data collection

	3.5 Data preprocessing
	3.5.1 Data cleaning
	3.5.2 Data Transformation
	3.5.3 Exploratory data analysis
	3.5.4 Types of exploratory data analysis
	3.5.5 Multivariate
	3.5.6 Dimensionality reduction
	3.5.7 Data balancing

	3.6 Summary
	Further Reading

	4 Machine learning operations
	4.1 Model development
	4.1.1 Dataset splitting
	4.1.2 Choosing an algorithm
	4.1.3 Model training
	4.1.4 Model evaluation
	4.1.5 Overfitting and underfitting
	4.1.6 Model optimization

	4.2 Model deployment
	4.3 Model monitoring
	4.4 Ethical considerations in machine learning operations (MLOps)
	4.5 Summary
	Further Reading

	5 Machine learning software and hardware requirements
	5.1 Programming languages
	5.1.1 Python programming language
	5.1.2 R programming language
	5.1.3 MATLAB
	5.1.4 Other programming languages
	5.1.5 Java programming code editors and IDEs
	5.1.6 Java ML libraries
	5.1.7 C++ programming code editors and IDEs
	5.1.8 C++ programming libraries
	5.1.9 Criteria for choosing programming language for machine learning

	5.2 No-code tools
	5.3 Experiment tracking tools
	5.4 Pre-trained models repositories
	5.5 Datasets and model tracking tools
	5.6 AutoML hyperparameter optimization tools
	5.7 Machine learning life cycle tools
	5.8 User interface development tools
	5.9 Explainable AI tools
	5.10 Version control systems
	5.11 Machine learning hardware requirements
	5.12 Operating systems requirements
	5.13 Processor and memory requirements
	5.13.1 CPU
	5.13.2 GPU
	5.13.3 TPU
	5.13.4 RAM
	5.13.5 Storage

	5.14 Cloud computing services for machine learning
	5.15 Summary
	Further Reading

	6 Responsible AI and explainable AI
	6.1 Responsible AI
	6.2 Explainable AI
	6.3 Privacy concerns in machine learning
	6.4 Ethical implications of machine learning
	6.5 Accountability and trust in AI
	6.6 Global case studies on AI governance and regulation
	6.6.1 Formulation of AI strategies and guidelines in Africa
	6.6.2 European Union AI Act
	6.6.3 Global partnership on AI
	6.6.4 China AI ethics guidelines

	6.7 Human-centric artificial intelligence
	6.8 Responsible AI best practices
	6.9 AI impact assessment case studies
	6.10 Artificial intelligence sovereignty
	6.11 Summary
	Further Reading

	7 Artificial general intelligence
	7.1 Categories of artificial intelligence
	7.2 What makes an intelligence general?
	7.3 Approaches for developing AGI
	7.4 Philosophy of mind
	7.5 Challenges of artificial general intelligence
	7.6 Potential benefits and risks of artificial general intelligence
	7.7 Indicators of the presence of artificial general intelligence
	7.8 Robotics and embodied intelligence
	7.9 Artificial super intelligence
	7.10 Summary
	Further Reading

	8 Machine learning step-by-step practical examples
	8.1 Case study 1: Classification problem
	8.1.1 Problem definition
	8.1.2 Loading libraries
	8.1.3 Loading dataset
	8.1.4 Data summary
	8.1.5 Data preprocessing
	8.1.6 Split-out the dataset
	8.1.7 Choosing classification algorithm
	8.1.8 Training the model

	8.2 Case study 2: Regression problem
	8.2.1 Problem definition
	8.2.2 Loading libraries
	8.2.3 Loading dataset
	8.2.4 Data summary
	8.2.5 Data preprocessing
	8.2.6 Choosing regression algorithm
	8.2.7 Training the model

	8.3 Case study 3: Clustering problem
	8.3.1 Problem definition
	8.3.2 Loading libraries
	8.3.3 Loading the dataset
	8.3.4 Renaming column names
	8.3.5 Data summary
	8.3.6 Dropping less informative features
	8.3.7 Feature transformation
	8.3.8 Performing clustering using K-means algorithm
	8.3.9 Cluster visualization
	8.3.10 Model evaluation
	8.3.11 Case study 4: Association rules
	8.3.12 Problem definition
	8.3.13 Loading libraries
	8.3.14 Loading dataset
	8.3.15 Data summary

	8.4 Feature transformation
	8.4.1 Data visualization
	8.4.2 Model development

	8.5 Summary

	Appendix Machine Learning Resources
	Index

